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deren als die angegebenen Quellen und Hilfsmittel benutzt habe. Die Stellen meiner
Arbeit, die dem Wortlaut oder dem Sinn nach anderen Werken entnommen sind, habe
ich in jedem Fall unter Angabe der Quelle als Entlehnung kenntlich gemacht. Dasselbe
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Abstract

Achieving high spatial resolution with Electron Probe Microanalysis requires robust
matrix correction procedures. Matrix corrections can be performed if the generated X-
ray intensity distribution φ in the material sample is known or can be approximated.
So far, only empirical models that approximate this distribution along the vertical
axis, denoted by φ(ρz), have been developed and studied. The aim of this project is
to develop an empirical model that describes the distribution in two dimensions. An
empirical model based on a skewed generalised normal distribution that approximates
φ(ρr, ρz), which describes the distribution along the radial and vertical directions, is
proposed. The model is tested and the model parameters are estimated by performing
curve fitting on a large set of generated X-ray intensity distribution data acquired from
Monte-Carlo simulations. It is shown that there is good agreement between the fitted
model and the data acquired from Monte-Carlo simulations.
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1 Introduction

Electron Probe Microanalysis is a non-destructive technique for elemental and struc-
tural analysis of very small materials at the micron and sub-micron scale. The tech-
nique involves bombarding a material with a stream of electrons and analysing the
emitted X-rays of specific characteristic wavelengths. The tool used for electron probe
microanalysis (EPMA) is called an Electron Microprobe.

1.1 Electron Probe Micro Analyser

In construction the Electron Microprobe is very similar to a Scanning Electron Mi-
croscope with the addition of several Energy Dispersive Spectrometers, Wavelength
Dispersive Spectrometers (WDS) and an electron beam current which is stabilized for
X-ray analysis. A modern electron microprobe typically consists of an electron column,
a control console and a detector subsystem.

Within the electron column an electron gun generates electrons and accelerates them
to energies in the range of 0.1 - 30 keV . A set of electron lenses collimate and focus
the generated electron beam into a very small spot (< 10 nm) on the test sample.
The sample is mounted on a stage at the bottom of the electron column. A vacuum
is maintained inside the electron column to minimise scattering of the electrons in the
beam. Electron microprobes are also often equipped with optical lenses and cameras
to observe the specimen and perform any necessary preliminary tests which might
be necessary to fulfil the Rowland circle condition. For analysis, the electron beam
is generally scanned across the specimen surface using deflection coils or scanning is
performed by moving the stage. A control console is used to control the scanning of
the beam or the positioning of the stage, respectively.

The interaction of the electron beam with the test sample can produce a variety
of signals such as - heat, continuum X-ray radiation (bremsstrahlung), characteristic
X-ray radiation, secondary electrons, back-scattered electrons, and Auger electrons.
Specialized detectors can be used to detect each of these signals. The characteristic
X-rays are of primary interest for X-ray microanalysis. These X-rays are detected and
their intensities measured using energy dispersive or wavelength dispersive spectrom-
eters. The measured signals are fed to a computer for imaging and further qualitative
and quantitative analysis.

1.1.1 Characteristic X-Rays

The electrons from the electron beam enter the test sample and interact with the
material in the form of a series of elastic and inelastic collisions with the material
atoms until the kinetic energy of the electrons drop to a very low level or they exit the
sample. An electron with a high enough kinetic energy can impart its kinetic energy
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Figure 1: A schematic of an Electron Probe Micro Analyser from CAMECA Science
& Technology Solutions [61]

to an inner shell electron of an atom in the sample and knock it out of its shell. This
creates a vacancy in such a shell, which is unstable and hence, must be filled by a shell
electron of higher energy or a free electron. When an electrons jumps from a higher
energy shell to a lower energy shell, it emits energy in the form of a photon. In such
interactions, the wavelength of the emitted photon is determined by the energy gap
between the shells jumped by the electron. These emitted photons lie in the X-ray
range of the electromagnetic spectrum. Since every element has a unique electron
structure the emitted X-rays have wavelengths that are characteristic to the scattering
element.

The emitted X-rays can get absorbed within the material, result in the emission of
other characteristic X-rays through fluorescence or radiate out of the material. The
emitted X-rays can be detected with the two types of spectrometers introduced earlier.
Wavelength dispersive spectrometers (WDS) operate based on the principle of Bragg’s
diffraction and use crystals to separate specific wavelengths for the X-ray detectors.
Energy dispersive spectrometers (EDS) use solid state semiconductor detectors that
convert X-ray energy into voltage pulses. EDS systems are comparitively faster and
can detect X-rays of all elements. Wavelength dispersive spectrometers, on the other
hand, are more sensitive and have better signal to noise ratios, but cannot be used for
very light elements such as H, Li and Be [24, p. 486]. Newer types of WDS system
that use gratings and Bragg’s reflection law for wavelength separtion are capable of
detecting X-rays from Li and Be [55].
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1.1.2 Applications

In bulk materials electron microprobe microanalysis can be used for determination
of phase compositions and analysis of elemental distributions and can be used for
a variety of materials and surfaces such as: semiconductors, metals, ceramics, coat-
ings, composites, surface treated materials, minerals and glass [54]. In thin films and
coatings electron probe microanalysis can be used for quantitative determination of
composition and thicknesses of the thin layers. It can also be used for quantitative
analysis of complex multilayer systems[54].

1.2 Quantitative X-Ray Analysis

With wavelength dispersive spectrometers, electron microprobes can not only be used
for qualitative analysis like identifying constituent elements in a sample but also for
quantitative analysis such as identifying the chemical composition and several struc-
tural features.

The standard procedure for quantitative X-ray analysis involves detecting the in-
tensities of characteristic X-rays from the sample material and intensities of the same
X-rays from a material with known composition wich is referred to as a standard.
The ratio of sample X-ray intensities to the standard X-ray intensities, referred to
as k-ratios, are then computed. Measuring k-ratios helps in eliminating instrumental
factors and other factors that are common to the specimen and the standard [14][24,
p. 396].

At first glance k-ratios corresponding to a specific element can seem to be perfect
indicators of the mass fraction of that element relative to the known composition of
the standard. This was first noted by Raymond Castaing [14] and is called Castaing’s
“first approximation to quantitative analysis”. The composition of a specific element
in the unknown sample and the standard can thus be represented as

CA/(CA)std = IA/(IA)std = kA (1)

where CA and (CA)std are the mass fractions of the element A in the unknown sample
and the standard respectively; IA and (IA)std are the measured intensities for a charac-
teristic X-ray of the element A in the unknown sample and the standard respectively;
kA is the corresponding k ratio.

But careful measurements of known compositions have shown that there are signif-
icant deviations between k-ratios and ratios of mass fractions [23][24, p. 402]. It has
been found that for most quantitative chemical analysis the measured intensities from
specimen and standard must be corrected for differences in electron backscatter, den-
sity, X-ray cross section, energy loss, absorption, fluorescence, etc. [24, p. 402]. These
effects are collectively called Matrix effects.
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1.3 Matrix Correction Methods

There are many factors that dictate the intensity of generated and thereby detected
characteristic X-rays as discussed earlier and as a result, correcting for the matrix
effects is not trivial. The most common matrix correction methods employ some form
of iterative optimization technique and a function or a computational model which
predicts the emitted X-ray intensities for a known sample composition. [24, pp. 402–
420]

1.3.1 ZAF Method

One of the most popular correction procedures has been the ZAF procedure [24, p. 402]
[46]. It was first conceptualised by Philibert and Tixier [44]. In this procedure the
corrections required to compensate for matrix effects are classified into three types -
correction for atomic number Z, correction for absorption A and correction for fluo-
rescence F .

Atomic number correction factor Z: When a sample is bombarded with an electron
beam, electrons from the beam enter into the sample and scatter repeatedly re-
sulting in, among other phenomena, the generation of characteristic X-rays. The
scattering behaviour in a material and hence the interaction volume of electrons
is largely dependent on the atomic number, and hence require an atomic number
based correction.

Absorption correction factor A: Only a part of the X-rays generated within a mate-
rial sample get emitted. The rest are absorbed on their way out of the material.
The absorption correction factor accounts for this.

Fluorescence correction factor F : Sometimes high energy characteristic X-rays gen-
erated within the material can induce ionizations in other atoms and result in the
emission of other characteristic X-rays. This phenomenon is called fluorescence.
This factor is usually calculated based on the model provided by Reed [50].

Once the Z, A and F factors are know, they can be plugged into equation (1), which
yields

CA/(CA)std = [ZAF ]AIA/(IA)std = [ZAF ]AkA. (2)

Thus the unknown concentration of element A in the sample can be calculated as

CA = [ZAF ]AkA(CA)std (3)

This method has the advantage of being very simple and fast. But because of its
simplicity, it is less flexible and not suitable for non-homogeneous or other unusual
material samples.
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1.3.2 Analytical Methods

As discussed earlier, there exists a finite electron interaction volume within the material
were most of the characteristic X-rays are produced. The generated intensity of x-rays
varies within this region. Generated charecteristic X-ray photons are often absorbed
on their path to the detector and the location where they are generated determines
their likelihood of being absorbed. Hence, if the generated X-ray intensity distribution
is known the total generated and the total emmited X-rays accounting for absorption
can be determined. On the other hand the fluorescence factor is less affected by
changes in the ionization distribution. This is because volume of the sample affected
by fluorescence, i.e. X-rays generated by other generated X-rays, is 1-2 orders of
magnitude greater than the interaction volume of the electron beam [42]. Hence,
fluorescence is generally handled separately.

This method is often called the φ(ρz) method. It gets this name from the notation,
φ(ρz), used to describe the generated X-ray intensity distribution with respect to the
mass depth ρz. The mass depth ρz is the product of mass density ρ and the depth
z. The concept of φ(ρz) was first introduced by Castaing [14] and was popularized
after formulations by Packwood and Brown [42] and Pouchou and Pichoir [46]. φ(ρz)
is related to the total emitted X-ray intensity IA as

IA ∝ CA

∫

∞

0

φ(ρz) exp(−µAρz cscΨ)dρz, (4)

where CA is the mass fraction of element A and exp(−µAρz cscΨ) is the correction
for absorption; µA is the mass absorption coefficient for the X-ray of interest in the
material and Ψ is the take off angle to the detector (i.e. the angle of the detector with
respect to the sample surface). The emitted X-ray intensity for a standard and thus
the k-ratio is given by [14]

kA =
IA

(IA)std
=

CA

∫

∞

0

φ(ρz) exp(−µAρz cscΨ)dρz

(CA)std

∫

∞

0

φstd(ρz) exp (−(µA)stdρz cscΨ) dρz

. (5)

The mass fraction CA can be determined if k-ratio, (CA)std, φ(rhoz), φstd(ρz) and other
constants involved are known. φ(ρz) method can also resolve features like discontinu-
ities or heterogeneities along the depth as long as the φ(ρz) descriptions for such cases
are available. One or more compositional or structural features can be determined
from an equal or greater number of measured k-ratios. An optimization algorithm is
generally used to determine the unknown features based on k-ratios computed from
the φ(ρz) description.

Numerical Methods: Numerical methods can be used to simulate electron trajecto-
ries or transport within a material sample and the corresponding k-ratio can predicted.
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Monte-Carlo simulations, which will be discussed in detail in section 2, are most com-
monly employed for this purpose. Features of the sample can be determined using
iterative optimization algorithms which use Monte-Carlo simulations for forward cal-
culations [45]. The Monte-Carlo simulations try to simulate the physics of electron
motion and scattering. They are thus more accurate than any of the methods dis-
cussed before. They are also very versatile, enabling the use of any kind of sample.
Monte-Carlo simulations, however, are stochastic in nature and thus introduce stochas-
tic noise, which can make optimization harder. Deterministic formulations based on
transport equations that do not possess this problem have also been developed in recent
years [38][12].

1.4 Empirical models for generated X-ray intensity distribution

1.4.1 Why do we need empirical models?

Numerical methods such as the Monte-Carlo method are very good at predicting the
physical behaviour of electrons and thus are compelling choices for matrix correction.
Modern computers can run a single Monte-Carlo simulation pretty quickly. But com-
plex problems require iterative optimization routines for matrix corrections, which
require multiple simulations to be run in a sequence. X-ray data acquired by an elec-
tron probe is also, typically, in the form of 2D X-ray map containing many data points
and computing matrix corrections for each of these points can result in a very large
number of simulations to be run. In such cases, Monte-Carlo methods are just too
slow. Empirical models for generated X-ray intensity distribution can thus be a good
compromise between speed and accuracy required for such iterative matrix correction
procedures. In fact, numerical methods such as Monte-Carlo simulations can be used
to build and improve the empirical models so as to very closely mimic their output.

1.4.2 The Story So Far

Although, the generated electron intensity distribution φ can be expressed in three or
two dimensions, only the one-dimensional distribution φ(ρz) defined along the mass
depth has been popularly studied and analysed. φ(ρz) was originally defined by Cas-
taing [14] as : φ(ρz) is the ratio of the generated X-ray intensity in an elemental layer
of mass thickness dρz at a mass depth ρz to that of an identical but unsupported layer.

One of the earliest popular empirical descriptions of φ(ρz) was provided by Philbert
[43]. The analytical form of the Philbert model is given by

φ(ρz) = A exp(−σρz)
[

1− exp
(

−σρz
h

)]

(6)

where A is a constant, σ is the Lenard coefficient and h = 1.2A/Z2; Z is the atomic
number, A is the atomic mass of the material sample [42]. This model was popular
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and extensively used when there was very little information and experimental data on
the real depth distribution of ionization. This model however had an obvious flaw in
that φ(ρz) was 0 at ρz = 0, while the very definition of φ(ρz) according to Castaing
requires φ(ρz = 0) to be greater than or equal to 1.

Later Packwood and Brown improved on this model and provided a modified Gaus-
sian expression [42]. It was given by

φ(ρz) = γ0 exp

{

−α2(ρz)2
[

1−
(

γ0 − φ0

γ0

)

exp (−βρz)
]}

(7)

They also provided empirical expressions for the constants γ0, α, φ0 and β based on
physical arguments.

The most robust description of φ(ρz) to date, however, was provided by Pouchou
and Pichoir in the form of their “PAP” and “XPP” models [46]. The PAP model is
constructed by stitching two parabolas together at a specific mass depth. The model
was developed as to satisfy the following condition [46]:

• the integral must be equal to a certain value F ,

• at the surface the correct φ(0) must be obtained,

• the maximum must be at certain mass depth Rm and

• the function must vanish with a horizontal tangent at the maximum range of
ionization Rx.

These features are illustrated in figure 2.

Hence, they arrived at the following distribution.

φ(ρz) =

{

φ1(ρz) = A1 · (ρz −Rm)
2 +B1 0 ≤ ρz ≤ Rc

φ2(ρz) = A2 · (ρz −Rx)
2 0 ≤ ρz ≤ Rc

, (8)

where the constants A1, B1 and A2 can be computed from the known values of F ,
φ(0), Rm, and Rx [46]. Further they also provided a simplified model called XPP,
which could be expressed in the form of exponentials as follows.

φ(ρz) = A · exp(−aρz) + [Bρz + φ(0)− A] · exp(−bρz) (9)

The coefficients A, B, a, and b can also be computed from the values of the area of
the distribution F , the value of φ(0), the slope p at ρz = 0 and the average depth
of ionization R [46] (see figure 2). The PAP model can also be used for stratified
samples by simply computing the four basic parameters as if they were for a fictitious
homogeneous material and using the PAP model as usual. The composition of the
fictitious material can be determined using a special weighting procedure. A more
detailed comparison of the different models can be found in [58].
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Figure 2: Features of the φ(ρz) distribution as required by the PAP and XPP models.

1.4.3 Empirical Models in more Dimensions

Although φ(ρz) is a very useful distribution to know, it can only resolve features in
the vertical direction. When vertical layers are present in the material φ(ρz) can
cause mischaracterizations. For example, an element from an adjacent vertical layer
might show up as a trace element in the current region. Also, a full three dimensional
description of the distribution can be used as an alternative to the computationally
more expensive Monte-Carlo simulations for complex matrix correction procedures.

Not much work is visible in literature related to φ in other dimensions (for example,
φ(ρx)) or more dimensions (for example, φ(ρx, ρy, ρz)). Armstrong [2] investigated
φ(ρx, ρy, ρz) for micro-particles in order to account for side-scattering, i.e. energetic
electrons leaving the material through the sides. The author proposed a simple ap-
proximation for the same as

φ(ρx, ρy, ρz) =
[

1−
∣

∣

∣

x

D

∣

∣

∣
−
∣

∣

∣

y

D

∣

∣

∣
+
∣

∣

∣

xy

D2

∣

∣

∣

]

φ(ρz), (10)

where D is the diameter of the micro-particle.

1.5 Scope of this Project

In this project we study and investigate various forms of the generated intensity dis-
tribution. We, particularly focus on the distribution φ(ρr, ρz) which is a description
of the distribution along the mass radial distance and the mass depth. Further, we
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attempt to obtain an empirical model for the same with the help of curve fitting on a
generated database.

1.5.1 Generating data for Analysis and Curve Fitting

In order to develop an empirical function for a multi-dimensional description of the X-
ray intensity distribution it is essential to have a set of data describing the distribution
for known composition of materials. Physical approaches to obtaining this data in-
clude the so called “Tracer method” and “angular distribution method”. Experimental
methods are not suitable for generating large sets of X-ray intensity distribution data,
especially in two and three dimensions because of the difficulties involved in prepar-
ing the samples and setting up the experiments. Hence, generating X-ray intensity
distribution data from numerical simulations of the motion of energetic electrons in
a material matrix can be a good alternative. Several studies (for example [36] [30]
[33] [22] [20] [32]) have shown that Monte-Carlo methods can be used to reliably sim-
ulate the motion of energetic electrons in a material matrix by comparing simulated
quantities with experimentally measured φ(ρz) using tracer methods, back scattered
electron production and/or continuum X-ray production. A Monte-Carlo simulation
generates a random walk for the path of the electron through a material assuming
randomly placed atoms. Electron-material interactions like scattering and ionizations
are determined by random chance and probabilities. Due to the stochastic nature of
the simulation, many electron paths need to generated and their effects be averaged
to attain repeatability. Monte-Carlo simulations are also extremely versatile, i.e. it
can be adopted for any shape or geometry of the sample with any composition of
materials as long as the few fundamental characteristics of the material required for
the algorithm are known. In the context of EPMA simulated electron trajectories can
be used to approximate the distribution of ionization events. This can give a three
dimensional description of the X-ray intensity distribution which is not easy to obtain
experimentally without the use of destructive techniques.
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2 The Monte-Carlo Method

2.1 Basics of the Monte-Carlo Method

Most Monte-Carlo implementations make use of two important assumptions in order
to simplify computation [30]. They are as follows:

1. The angular deflections suffered by an electron and thereby the actual path tra-
versed by the electron is mainly determined by the elastic scattering events in the
material alone. Deflections caused from inelastic scattering events are assumed
to be insignificant and hence often ignored.

2. The energy loss due to inelastic scattering events is assumed to be continuous.
Since inelastic scattering events comprise of many interactions such as continuum
X-ray generation, characteristic X-ray generation, Auger electron production and
so on, modelling each of these interactions as distinct events can significantly
increase computational time and complexity. A continuous energy loss of this
kind as an electron travels from one point in the material to another was first
modelled by Bethe [7].

These assumptions can be avoided and inelastic scattering events can be modelled
similar to elastic scattering events as discrete scattering events, for added accuracy.
But the gain in accuracy resulting from this is trivial compared to the negative impact
on computational speed [30].

Further there are two popular techniques used to simulate elastic scattering events,
which are as follows.

Single Scattering Model: The single scattering model tries, in principle, to simulate
every elastic scattering event in an electron trajectory until the electron leaves
the material or its energy falls below the simulation threshold. Some of the first
implementations of this technique include those by Reimer et al. [52] and Murata
et al. [39]. In this method a random mean path length is generated at every step
of an electron trajectory and is used to displace the electron from its current
position to the next. This method is, potentially, more accurate compared to the
multiple scattering model which is discussed below [39] [30].

Multiple Scattering Model: In the multiple scattering model an analytical maximum
trajectory length for electrons is first calculated. This can be done for example
by integrating the Bethe energy loss (dE/ds). The total trajectory length is
then divided into a small finite number of steps (say 50) and at each step multi-
ple elastic scattering events are carried out based on Lewis’ Multiple Scattering
Theory [34]. Essentially, the effects of several scattering events that could have
occured along the path of the electron during a step are summed up. Some of the
first Monte-Carlo methods that were developed for the simulation of energetic
electron in materials made use of this technique, for example [25] [8] [60]. The
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Figure 3: Material Sample: region B bounded by surface ∂B

multiple scattering model has the benefit of being faster compared to the single
scattering model because the number of steps in single electron trajectory can
get very large in the single scattering method.

2.2 NISTMonte and NIST DTSA-II

Several implementations of the Monte-Carlo method for simulation of electron scatter-
ing are available today like Monaco [1], PENELOPE [59] and PENEPMA [35], CASINO [21],
WinX-Ray [18] and NIST DTSA-II [57].

Among these programs, NIST DTSA-II was the most convenient for our purpose of
generating ionization distribution data since it is available as source code and contains a
large library of algorithms useful in electron probe quantitation called the EPQ library.
NIST DTSA-II stands for National Institute of Standards and Technology Desktop
Spectrum Analyser II. NISTMonte [56] was a stand-alone Monte-Carlo simulation tool
which has now been incorporated into and replaced by NIST DTSA-II. The program
is open source and is written in the Java programming language.

2.3 The Monte-Carlo Algorithm

The following is a brief overview of the Monte Carlo method used to simulate electron
trajectories in the context of EPMA.

2.3.1 Material Sample

The material sample must be well defined as a three dimensional solid object during the
setup of the simulation. Let B bounded by the surface ∂B be a the three dimensional
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Figure 4: A simple experimental setup for Monte-Carlo simulations

region of space that defines the material sample. B can be made up of one or more non-
overlapping sub-regions Pi with i = 1, 2, . . . , nB bounded by surfaces ∂Pi respectively,
as illustrated in figure 3. The sub regions must satisfy the conditions: Pi ∩ Pj ≡

∂Pi∩∂Pj ∀i 6= j and

nB
⋃

i=1

Pi = B. Every sub-region Pi must be homogeneous with mass

density ρi and material compositions defined by atomic numbers ZiA and corresponding
mass fractions CiA.

NISTMonte provides an interface to define custom shapes. The EPQ library also
provides several standard shapes like spheres, cylinders, multi-planar shapes, etc. as
templates. For a bulk sample it is convenient to choose simple cuboid region as B.
The cuboid should be, ideally, much larger than the interaction volume of the electron
beam, so that electrons can only escape the material through back-scattering. We
chose pure element homogeneous materials as our samples because they are of primary
interest for us to obtain the initial function fits for φ(ρr, ρz). Figure 4 shows such a
simple experimental setup.

2.3.2 Electron Beam

The shape of the electron beam, the beam energy E0, the position x0 of the source and
the direction u0 in which the beam is fired are required to define the electron beam.
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Electron beam shape: There are three major parameters defining the shape of the
electron beam - the convergence angle of the beam αp, the distribution of the
incident electrons on the sample surface and the associated beam diameter dp.
The convergence angle is a consequence of focusing the beam using electron
lenses. The distribution of incident electrons is generally modelled as a bivariate
Gaussian, where the dp describes the standard deviation of the said Gaussian.
In the case of a uniform distribution, dp describes the actual diameter of the
beam. In this project only a point beam with αp = 0 and dp = 0 is used.
Although this is not representative of the real electron beams, knowing the X-
ray intensity distribution for a point beam gives us the flexibility of convoluting
the distribution for any combination of beam parameters. In other words it helps
us generalize the X-ray distribution.

Electron beam energy: Denoted by E0, it is the energy of the electrons when they
are generated at the source. It might be convenient to calculate the beam energy
from an over-voltage ratio, denoted by U , because many of the properties of X-
ray intensity distribution are tied to it. It is the ratio of the beam energy E0 to
the edge energy Enl of the atomic shell whose vacancy when filled, results in the
generation of the X-ray line of interest Enl, i.e.

U =
E0

Enl

. (11)

The position of the source : This is the point in three dimensional space x0 ∈ R
3

from where the electrons start their trajectories.

Direction of the beam : This is the direction given by a unit vector u0 ∈ R
3 in

which electrons are fired from x0. It is more convenient to specify the direction
in spherical coordinates as angles θ0 ∈ [0, π] and φ0 ∈ [0, 2π) for Monte-Carlo
simulations. θ0 is the polar angle, i.e. the angle between u0 and the positive Z axis
in Cartesian coordinates. φ0 is the azimuthal angle, i.e. the angle made by the
projection of u0 on the XY-plane and a reference azimuth direction, which is by
convention, the positive X-axis, and is measured in the anti-clockwise direction.
For the setup shown in figure 4 where the beam is directed along the negative Z
axis, u0 = [0, 0,−1] in Cartesian coordinates. In spherical co-ordinates, it would
be equivalent to θ = π and φ ∈ [0, 2π) or φ = 0 without loss of generality.

In NISTMonte, the electron beam is set up by defining an electron gun (ElectronGun)
object which stores these parameters and is responsible for initializing electron trajec-
tories.

2.3.3 State of the Electron

It might be necessary to keep track of the following properties of an electron while
simulating its trajectory: its position x ∈ R

3, its energy E, its direction given by
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Figure 5: Monte-Carlo simulation: electron trajectory step

θ ∈ [0, π] and φ ∈ [0, 2π), the region of space R the electron is currently in. θ and
φ are defined in the same way as in the previous section (2.3.2). At the start of each
electron trajectory, an electron object is created by the electron gun and is initialized
with x = x0, E = E0, θ = θ0 and φ = φ0. For the region R, a vacuum region V
defining the chamber is created. This region facilitates the first step in the electron
trajectory where the electron is transported from the electron source to the surface of
the material sample.

2.3.4 Simulating Electron Trajectories

NISTMonte makes the same assumptions as those mentioned in section 2.1. Only elastic
scattering events determine the deflection of electrons and hence, the trajectory of the
electron. Energy loss due to inelastic scattering events is continuous. NISTMonte

makes use of Java interfaces to make the choice of algorithms very versatile. Using
the scattering material model interface, any scattering model from the EPQ library
can be used or a new one be implemented. This makes it possible to implement any
variation of either the single scattering or the multiple scattering model. We used
the “basic scattering model” (BasicMaterialModel) provided in the EPQ library. This
model implements a simple single scattering algorithm without secondary electron
generation. For the modelling of the elastic scattering events another set of algorithms
must be chosen or implemented. We used the NISTMottScatteringAngle algorithm
from the EPQ library which is based on [28].

An electron trajectory is initialized by the electron gun object. It then goes through
a series of scattering steps until it is no longer necessary to track the electron. At the
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start of every step, it is checked whether the electron requires tracking. An electron
requires tracking if its energy is above a minimum threshold energy Emin and if its
region R is valid, i.e R is either V or B. Next, a new candidate point xnext is calculated
by displacing x along its current direction by a randomly generated mean free path
length s. This is depicted in figure 5.

2.3.5 Calculating the Mean Free Path

The random mean free path s tries to mimic the distance an electron would travel
between two successive elastic scattering events, given its current state. If the electron
is in vacuum V at the start of the trajectory, s is chosen as a large value so that the
path intersects with the the surface of the sample. If the electron is in the sample B,
s is generated as follows.

s = −λ log (R ∼ U(0, 1)) (12)

where R ∼ U(0, 1) is a uniformly distributed random number between 0 and 1. λ is
the mean path length in m. It represents the average distance an electron with energy
E would travel between successive elastic scattering events in the material region R it
is currently travelling in. For a pure element sample it is calculated as follows.

λ =
A

ρσE
(13)

A is the atomic mass in kilograms; ρ is the mass density in kg/m3 and σE is the total
elastic cross section in m2. σE for electron energies greater than 20keV is computed
using the Screened Rutherford Scattering Model [27, p. 459] -

σE =
7.670843088080456× 10−38 · Z1/3(1 + Z)

E + 5.44967975966321× 10−19 · Z2/3
(14)

For energies less than 20 keV , σE is calculated using the NIST Mott electron scattering
model [28] and the NIST SRD 64 database [48]. If the material is a composition of n
elements of atomic numbers ZI=1,2,...,n with mass fractions CI=1,2,...,n respectively, the
random mean free path length s is computed as follows -

λI =
AI

CIρσEA
∀I = 1, 2, ..., n

sI = −λI log (R ∼ U(0, 1)) ∀I = 1, 2, ..., n

s =
n

min
i=1

sI (15)

The element that results in this least mean free path length is recorded as the scatter-
ing element, indicating that the electron has elastically collided into an atom of that
element.
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After the candidate-point xnext is calculated, a lookup algorithm is used to determine
where this candidate point lies. Depending on where xnext lands, there can be one of
two outcomes, which are as follows.

• If the candidate point xnext lands in the same sub-region as x the electron is
simply moved to the new point and a scattering event is initiated.

• If the candidate point xnext is in a different sub-region or outside the material
sample B, the electron is moved to the intersection of the line connecting x to
xnext and the boundary of the current sub-region. The electron is then given a
small displacement into the next region. No scattering event is triggered.

2.3.6 Continuous Energy Loss from Inelastic Scattering

The continuous energy loss ∆E due to inelastic scattering resulting from a displacement
s is computed from the stopping power dE/dS as

∆E =
dE

ds
· s. (16)

Stopping power is the resistance offered to the motion of electrons in a material and is
a combined effect of various inelastic scattering events and the continuous deceleration
of electrons due to the Coulomb field of the electrons of the material atoms. The most
well known expression for calculating the stopping power was provided by Bethe [7] as

dE

ds
= −78500 · ρZ

AE
· log

(

1.166E

J

)

[keV/cm], (17)

where ρ is the mass density in g/cm3, Z is the atomic number, A is the atomic weight
in g, E is the energy of the electron in keV and J is the mean ionization potential
in keV . Negative sign in the expression indicates loss of energy. The mean ioniza-
tion potential J is the mean of the energies required for all possible inelastic scat-
tering interactions for the electron along its path in the current step. We used the
Berger83MeanIonizationPotential implementation available in the EPQ library for
the computation of J . It is based on the data tabulated by Berger and Seltzer [6].

Bethe energy loss provides satisfactory values for stopping powers for high beam
energies but will result in discrepancies for low beam energies [29]. Hence a modifica-
tion was proposed by Joy and Luo [29] which introduces a modified mean ionization
potential J∗ to be used in the Bethe energy loss expression as follows:

dE

ds
= −78500 · ρZ

AE
· log

(

1.166E

J∗

)

[keV/cm], (18)

J∗ =
J

1 + k · J/E [keV ], (19)

k = 0.731 + 0.0688 log10 Z.
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Figure 6: Monte-Carlo simulation: deflection of electron due to elastic scattering

2.3.7 Elastic Scattering

When an elastic scattering event is triggered, an elastic collision of the electron with
an atom of the scattering element is simulated. In this process the direction of the
electron is changed to mimic its deflection after the collision. To obtain the deflection,
the co-ordinate axis is first rotated such that the Z-axis of the rotated system is aligned
along the current direction of the electron. A new direction vector is determined by
deflecting the current direction vector from the rotated Z-axis by a randomly generated
scattering angle θ̃ ∈ [0, π] followed by a deflection about the Z-axis by another random
angle, resulting in a new azimuthal angle φ̃ ∈ [0, 2π) in the rotated co-ordinate system.
This process is illustrated as in the figure 6. The new θ and φ values are then obtained
from the new direction vector by rotating the co-ordinate system back to the global
co-ordinate system.

φ̃ ∈ [0, 2π) is generally chosen as a random number from the uniform distribution
U(0, 2π) and is not affected by any electron or material parameters. θ̃ ∈ [0, π], on
the other hand, is calculated based on elastic scattering models. For electron energies
greater than 20 keV , θ̃ is obtained using the screened Rutherford scattering model [40].

α = 5.44968× 10−19 · Z
2/3

E

θ̃ = cos−1

(

1− 2αR

1 + α−R

)

(20)

R is a random number between 0 and 1 generated from a uniform distribution U(0, 1).
For energies less than 20 keV the scattering angle is computed using the NIST Mott
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elastic scattering model [28]. Similar to the NIST Mott elastic cross section this method
makes use of the NIST SRD 64 [48] database to generate random scattering angles.
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2.3.8 Pseudocode

The pseudocode provided in algorithm 1 summarizes the Monte-Carlo method de-
scribed so far.

Data: The material sample B with subregions Pi=1,2,...,n; electron beam
parameters (type, position x0, energy E0 and direction: θ0 and φ0); no.
of electrons nel; minimum energy for tracking Emin

Result: Simulation of electron trajectories
for i← 0 to ne do

generate electron and initialize trajectory;
position x← x0 ;
direction: θ ← θ0 and φ← φ0;
energy E ← E0;
region R ← V (vacuum) ;
exit material← false ;
repeat

s← random_mean_free_path(R, E);
xnew ← x+ s along current direction(θ, φ);
Rnext ← region where xnew lies;
if R = Rnext then

x← xnew;
E ← E − energy loss(R, E, s);
[θ, φ]← scatter([θ, φ],R, E);
if secondary electron produced then

track secondary electron;
end

else

xnew ← intersection point of path(x, xnew) and ∂R (boundary of R);
xnew ← xnew+ small displacement along xnew − x;
Rnext ← region just beyond ∂R along xnew − x;
if R ∈ B and Rnext /∈ B then

exit material← true

end

s← |xnew − x|;
x← xnew;
E ← E − energy loss(R, E, s);
R ← Rnext;

end

until exit material = true or E < Emin;

end

Algorithm 1: Pseudocode for the Monte-Carlo algorithm
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3 Generated X-ray Intensity Distribution

In this section we will explore of X-ray intensity distributions and the process of extract-
ing them from NISTMonte. Denoted by φ, the generated X-ray intensity distribution
can be described in one or more dimensions and hence can have different definitions
depending on the context. In general, this distribution gives us a measure of the
probability of characteristic X-rays being generated in a small region within the sam-
ple when the sample is bombarded with an electron beam. The most general way of
representing φ would be in three dimensions, for example φ(ρx, ρy, ρz) in Cartesian
co-ordinates. In one dimension, we can define φ as the depth distribution φ(ρz), the
lateral distributions φ(ρx) and φ(ρy), and the radial distribution φ(ρr). Two dimen-
sional distributions can be obtained by considering any two of these dimensions, such
as φ(ρx, ρz) and φ(ρr, ρz). So far, only the depth distribution φ(ρz) have been ex-
tensively studied and used to calculate the atomic number and absorption correction
factors for matrix correction.

We can arrive at a distribution of lower dimension by integrating a distribution of
higher dimension. For example,

φxz(ρx, ρz) =

∫

∞

−∞

φxyz(ρx, ρy, ρz)dρy, (21)

φz(ρz) =

∫

∞

−∞

∫

∞

0

φxyz(ρx, ρy, ρz)dρxdρy, (22)

φr(ρr) =

∫

∞

0

φrz(ρr, ρz)dρz, (23)

φz(ρz) =

∫

∞

0

φrz(ρr, ρz) · 2πρrdρr. (24)

φ(ρr, ρz) is of primary interest in this work and will be described in detail in later
sections.

3.1 Depth Distribution of the Generated X-ray Intensity from

Experiments

As introduced in section 1.5.1, there are two main experimental techniques which can
be used to obtain the depth distribution of generated X-ray intensity, namely the
Tracer method and the Angular Distribution method.

The tracer method was first described and used by Castaing and Descamps [16] to
obtain experimental φ(ρz) distributions and absorption factors for Al, Cu and Au.
In the tracer method two pure elements A and B are chosen such that their atomic
numbers are close by on the periodic table and they are not affected by characteristic
X-ray fluorescence. A thin layer of element B which acts as a tracer is sandwiched
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between one polished block of element A at the bottom and one or more thin layers
of element A on the top. By changing the total thickness of element A on the top,
the X-ray generated from the tracer at various depths in A can be determined. φ(ρz)
can then be calculated by computing the ratio of the obtained intensities at various
depths to that from a similar but unsupported layer of B. The total generated intensity
φB(ρz)δρz for a chosen X-ray line of element B is then given by

φ(ρz)δρz · exp(−µBρz cscΨ) = (IB)ρz/(IB)free (25)

where (IB)ρz is the measured X-ray intensity in the sandwich setup with the tracer
element layer of thickness δρz being at mass depth ρz. (IB)free is the measured X-
ray intensity from a similar layer of element B without the top and bottom layers of
element A. exp(−µBρz cscΨ) is the correction for absorption, where µB is the mass
absorption coefficient for element B in the sample and Ψ is the take of angle to the
X-ray detector. The absorption correction is sometimes represented as exp(−XBρz)
where XB = µB cscΨ. Castaing and Descamps [16] used the experimentally obtained
φ(ρz), to determine absorption correction factors required for the ZAF procedure as
follows.

f(XB) =
F (XB)

F (0)
=

∫

∞

0

φ(ρz) exp(−XBρz)dρz
∫

∞

0

φ(ρz)dρz

. (26)

In the angular distribution technique the depth distributions are obtained by analysing
the angular distribution of X-rays emitted from a bulk [26]. For a given take off angle
Ψi, this technique yields the Laplace transform of φ(ρz):

F (Xi) =

∫

∞

0

φ(ρz) exp(−Xiρz)dρz. (27)

Compared to the tracer method the experimental setup is much easier but a complex
numerical evaluation is required to obtain φ(ρz) from F (Xi) [32] [26].

3.2 The Interaction Volume

When an electron beam impinges on the surface of a material sample, electrons pen-
etrate into the sample and hence characteristic X-rays are generated from within the
material. The interaction volume defines the volume of the sample where the most
meaningful part of all characteristic X-rays are generated. In the context of Monte-
Carlo simulations, information about the interaction volume can help us optimize the
dimensions of the sample or the volume to be tracked for increased data density. For
this reason, it is also convenient to express the interaction volume in terms of the max-
imum ranges along its linear dimensions. Since, typically, the beam is fired on to the
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sample at right angles to the surface, the resulting interaction interaction volume is
radially symmetric. Hence, we only need to to know two ranges: the maximum depth
range of X-ray generation or depth of the interaction volume, denoted by Rx, and the
maximum radial range of X-ray generation or the diameter of the interaction volume,
denoted Dx.

The main factors that have been shown to affect Rx and Dx include the beam energy
E0, the relevant edge energy Enl and the atomic number Z or any equivalent metric of
the sample [24, pp. 68–72]. The interaction volume expands if E0 is increased because
electrons starting with more energy can travel longer distances before their energy
falls below the minimum energy required to cause the emission of the characteristic
X-ray line of interest. Characteristic X-rays are produced when an electron from higher
energy shell jumps through a fixed energy gap to fill a vacancy in a lower energy shell
nl. The edge energy Enl is the energy required to knock an electron out of the nl
shell to create such a vacancy. Enl can be calculated from analytical models such as
[62] or be obtained, for better accuracy, from databases such as [17] [19] and [9]. As
Enl increases the interaction volume contracts based on the same argument provided
for E0. For pure materials the interaction volume decreases with increase in atomic
number Z. This is because of the increased cross sections of higher atomic number
elements which results in shorter mean free paths and more scattering.

A crude method of estimating Rx and Dx would be by manipulating and integrating
an expression for the stopping power dE/ds in the interval Enl to E0. For example,
from (18) which is the Bethe energy loss expression [7] modified by Joy and Luo [29],
we can get

Rx =

∫ Rx

0

ds =

∫ E0

Enl

[

−78500 · ρZ
AE
· log

(

1.166E

J∗

)]−1

dE [cm]. (28)

This method actually yields the maximum trajectory length and since electrons don’t
travel in straight lines it is not ideal to use this measure directly as Rx [24, pp. 72–
74]. Numerous other expressions have been suggested to compute Rx empirically, for
example Castaing [15] provided the expression

Rx =
33A

ρZ

(

E1.7
0 − E1.7

nl

)

[nm], (29)

while Kanaya and Okayama [31] have suggested the expression

Rx =
27.6A

Z0.89ρ
E1.67

0 [nm]. (30)

In both expressions E0 and Enl are in keV , ρ is in g/cm3, A is the mean atomic
weight in g and Z is the atomic number. Similarly, few methods have been suggested
in literature for approximating the diameter of the interaction volume Dx. An easy
estimate would be to assume Dx ≈ Rx [63]. Reed [51] has recommended the use of
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Dx ≈ 3Rx as a better estimate. A more robust expression for the relation between Rx

and Dx can be found in [5], which is as follows:

Dx =
2.2GRx

(1 +G)
[nm], (31)

G = 0.187Z2/3.

Another way to obtain the dimensions of the interaction volume is to use Monte-Carlo
Simulations. Due to the stochastic nature of the algorithm it is not a good idea to
use the the maximum depth from which X-rays could be generated directly. Hence, a
threshold has to be used, for example, Rx andDx can be defined as the depth range and
diameter, respectively, in which approximately 99% of all the X-rays are generated. A
Monte-Carlo simulation can be run before an actual simulation to determine the range
or have these data precomputed and stored in a database which can be accessed before
a simulation is run.

3.3 Depth Distribution of Generated X-ray Intensity

For an X-ray line of an element A, ignoring fluorescence, φ(ρz) is related to the total
generated X-ray intensity IA as follows.

IA = CAQnl(E0)

∫

∞

0

φ(ρz) exp(−µAρz cscΨ)dρz (32)

where CA is the mass fraction of A, E0 is the beam energy, µA is the the mass absorption
coefficient of the sample for X-rays of element A, Ψ is the take off angle to the detector
and Qnl(E) is the absolute ionization cross-section for the atomic shell nl and Energy
E.

Absolute Ionization Cross-Section

Characteristic X-rays are produced when a vacancy created in an atomic shell nl is
filled by an electron from an atomic shell of higher energy. The absolute ionization
cross-section, also called the inelastic cross-section, is a measure of the probability
with which an electron of energy E would create nl shell vacancies by knocking of
the electrons in the shell per unit length of electron trjectory through the material.
One of the most widely used expressions for computing ionization cross sections was
provided by Casnati et al. [13]. With relativistic corrections suggested by Quarles [49]
this expression is as follows [47]:

Qnl(E) =
nnla

2
0FR

2ψφ lnU

E2
nlU

, (33)

φ = 10.57 exp

(

−1.736

U
+

0.317

U2

)

, (34)
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ψ =

(

Enl

R

)d

, (35)

d = −0.0318 + 0.3160

U
− 0.1135

U2
, (36)

U =
E

Enl

, (37)

where

Enl = the edge energy for nl shell,

R = the Rydberg energy unit in Joules ≈ 2.17987209× 10−18 J,

nnl = no. of electrons in the nl shell in the ground state of the atom,

a0 = the Bohr radius in m ≈ 5.291772083× 10−11m.

F is the the relativistic correction calculated as

F =

(

2 + I

2 + T

)(

1 + T

1 + I

)2(
(1 + T )(2 + T )(1 + I)2

T (2 + T )(1 + I)2 + I(2 + I)

)

, (38)

I =
Enl

mec2
, (39)

T =
E

mec2
, (40)

where

me = electron rest mass,

c = speed of light in vacuum.

This expression is sufficient for computing K-shell ionization cross sections, but L and
M shells are not characterized well. Another model that is at least as good as the
model described so far for the K-shell and with a better fit for L and M shells can be
found in [9] [10].

3.3.1 Obtaining the Distribution from Electron Density Distribution

In order to calculate φ(ρz) from simulated electron trajectories, we shall make use
of another quantity called the electron energy density distribution N(E, ρz). It is a
distribution of the average of length of electron trajectories with energy E in a layer
of infinitesimal thickness δρz at a mass depth ρz. It is computed as the sum total of
lengths of electron trajectories passing through the region with energies in the range
E ± δE/2 divided by the total number of electron trajectories simulated, where δE is
an infinitesimal change in energy. The intensity of characteristic X-rays of an element
A generated in a thin layer of thickness δρz at mass depth ρz in the sample can then
be calculated as

IA = CA

∫ E0

Enl

Qnl(E)N(E, ρz)dE (41)
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where CA is the mass fraction of A in the layer considered. Now, consider a similar
experimental setup but where the sample is swapped for just this thin layer. If we
assume that the electron beam is always incident along the normal to top surface of
the sample, for small values of δρz, the average length of electron trajectories passing
through the unsupported thin layer is equal to δρz and the energy is nearly uniform
and equal to E0. The intensity of X-rays generated from such a thin unsupported layer
would then given by

(IA)free = CAQnl(E0)δρz. (42)

φ(ρz) according to Castaing’s definition is then given by the ratio

φ(ρz) =
IA

(IA)free
=

1

Qnl(E0)

∫ E0

Enl

Qnl(E)N(E, ρz)

δρz
dE. (43)

This also gives us an alternate way to define φ(ρz) and φ in general, i.e as the ratio
of generated X-ray intensity per unit mass length at a depth ρz to the inelastic cross-
section corresponding to the beam energy E0.

3.3.2 Obtaining the Distribution from Monte Carlo Simulations

One of the ways to obtain φ(ρz) numerically is by discretizing ρz and E and computing
a histogram of φ(ρz) from trajectories simulated using a Monte-Carlo algorithm. We
start with the discretization of the sample along mass depth, in the range 0 to Rx, into
a set of Nz + 1 nodes

Ĝρz :=
{

ρ̂z0, ρ̂z1, . . . , ρ̂zNz
| ρ̂z0 = 0, ρ̂zNz

= Rx, ρ̂zi > ρ̂zi−1 ∀i = 1, 2, . . . , Nz

}

(44)

This is illustrated in figure 7. Without loss of generality, ρ̂zi can be denoted as positive,
despite moving along the negative Z axis as shown in figure 7. Conventionally, ρz has
always been denoted with positive values when discussing φ(ρz) in literature. Hence,
we chose to do the same for the sake of convenience and consistency. The intervals
bounded by successive nodes will function as bins to accumulate φ(ρz) as a histogram.
We can now define the mean positions of the Nz bins along ρz as

Gρz :=
{

ρzi =
ρ̂zi−1 + ρ̂zi

2
; i = 1, 2, . . . , Nz

}

. (45)

The bin sizes corresponding to these bins are then.

∆Gρz :=
{

∆ρzi = ρ̂zi − ρ̂zi−1; i = 1, 2, . . . , Nz

}

. (46)

Essentially, the sample is subdivided into horizontal layers. These layers are not mod-
elled as subregions in the sample and are stored in a separate data structure. Making
sub regions was avoided when possible because adding sub-regions increases the num-
ber of individual steps in a trajectory and therefore penalises performance . We can
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Figure 7: Discretization of the mass depth ρz

apply the same treatment to electron energy and obtain the discretization of energy
into NE bins in the range [Enl, E0] as

ĜE :=
{

Ê0, Ê1, . . . , ÊNE
| Ê0 = Enl, ÊNE

= E0, Êi > Êi−1 ∀i = 1, 2, . . . , NE

}

,

GE :=

{

Ei =
Êi − Êi−1

2
; i = 1, 2, . . . , NE

}

,

∆GE :=
{

∆Ei = Êi − Êi−1; i = 1, 2, . . . , NE

}

. (47)

We can then obtain the quantityN(E, ρz)dE from equation (43) in the discrete form,
as a two dimensional matrix, from a Monte-Carlo simulation. The matrix dimensions
are determined by the number of material bins NZ and energy bins NE. NZ and NE

are the number of rows and number of columns of the N matrix respectively. The
matrix

N =











N11 N12 · · · N1NE

N21 N22 · · · N2NE

...
...

. . .
...

NNz1 NNz2 · · · NNzNE











∈ R
Nz×NE (48)

26



is defined such that

Nij =

∑

(

electron path segments with energies between Êj−1 and Êj

at depths between ρ̂zi−1 and ρ̂zi

)

total no. of electrons
. (49)

The depth distribution in discrete form [φ(ρzi)] ∈ R
N
z , i.e. as a histogram, can

then be found from the discrete form of equation (43), by substituting E, ρz and
N(E, ρz)dE for their discrete counterparts, as

φ(ρzi) =
1

Qnl(E0)

Ne
∑

j=1

Q(Ej)Nij

∆ρzi
. (50)

3.3.3 Pseudocode

NISTMonte makes use of Java’s built in event handling mechanism to announce to the
rest of the program when specific scattering and non-scattering events during electron
trajectories take place. Event listeners can be defined before the program is run, and
any action event triggered during the execution of the program will be broadcast to
all the available event listeners. Since the code uses object oriented programming, all
simulation parameters are stored as objects which can be accessed by the event listeners
to perform additional tasks when an event is fired. Three types of events are listened to
for computing φ(ρz). They are the events signalling elastic scattering, barrier transport
(movement of electrons across sub-regions) and the end of electron trajectory (due
to loss of energy beyond the cut-off energy or the escape of the electron from the
material). NISTMonte, conveniently, also stores the previous state of the electron in
the electron object along with its current state. Details about the parameters that
define an electron’s state can be found in section 2.3.3. The current and previous
states of the electron being tracked can thus be extracted from the simulation and
the path traversed by the electron after the previous event until current simulation
time can then be determined. This path is then subdivided into smaller paths that
fit within individual ρz and E bins. The mass lengths of these mini-paths can then
be accumulated in corresponding positions in N matrix as shown in equation (50). A
pseudocode for the procedure is provided in algorithm 2.

3.3.4 Examples

Some plots of φ(ρz) obtained using NISTMonte Monte-Carlo simulations can be found
in figure 8. The figures confirm that φ(ρz = 0) ≥ 1. The distribution appears skewed
to the right. This is a result of the back-scattered electrons leaving the sample at
ρz = 0.
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Data: A Monte-Carlo simulation MCSim; ρz bins (Ĝρz, Gρz, ∆Gρz and Nz); E

bins (ĜE, GE, ∆GE, and NE); Beam energy E0.
Result: [φ(ρzi)] ∈ R

Nz

initialize;
N ← [0]Nz×NE ;
φ← [0]Nz ;
start MCSim

when any event ∈ {scatter, barrier transport, trajectory end} fired
do

electron ← current_electron(MCSim);
xs ← previous_position(electron);
xe ← position(electron);
ρzs ← mass_depth(xprev, electron);
ρze ← mass_depth(x, electron);
P ← path(xprev, x, electron);

{pi ; i ∈ is to ie} ← segment_path(P , ρzs, ρze, Ĝρz);
for i← is to ie do

Es ← start_energy(pi, electron);
Ee ← end_energy(pi, electron);

{qj ; j ∈ js to je} ← segment_path(pi, Es, Ee, ĜE);
for j ← js to je do

ρs← path_length(qj);
Nij ← Nij + ρs;

end

end

end

end

for i← 1 to Nz do

sum ← 0;
for j ← 1 to NE do

sum ← sum +Qnl(Ej)Nij;
end

φi ←
sum

QnlE0∆ρzi
;

end

Algorithm 2: Pseudocode for obtaining φ(ρz) from a Monte-Carlo simulation
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Figure 8: Some examples of generated X-ray intensity distributions in pure eleement
materials obtained from Monte-Carlo simulations
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3.4 Lateral Distribution of Generated X-ray Intensity

The lateral distribution of the generated X-ray intensity describes the distribution
along the X or the Y axis for an experimental setup such as in figure 4. The distribu-
tion is denoted as φ(ρx) or φ(ρy) respectively. For flat-topped homogeneous samples
bombarded by electron beams perpendicular to the top surface, the interaction vol-
ume has radial symmetry. In such cases, we can assume φ(ρx) = φ(ρy). Since we are
focusing on similar conditions, we will only focus of φ(ρx).

Analogous to φ(ρz), φ(ρx) describes the amount of X-rays generated in a vertical
layer of small thickness δρz, parallel to the Y Z plane and at a distance ρx from the
origin. But Castaing’s [14] definition for φ(ρz) cannot directly be applied here. It is
because if we isolate a thin vertical layer of the sample at distance ρx, electrons from
the electron beam won’t be able to reach it without a scattering medium. Hence φ(ρx)
is best defined using an expression similar to equation (32), i.e. φ(ρx) is that quantity
which is related to the generated X-ray intensity at a distance ρx as

IA = CAQnl(E0)

∫

∞

−∞

φ(ρx) exp [−µAg(ρx)] dρx, (51)

where IA, CA, E0, µA and Qnl(E) have the same definitions as in equation (32). The
new quantity g(ρx) is a measure of the average distance an X-ray generated in vertical
layer at ρx must travel through the material on its way to the detector assuming
a straight line of travel. φ(ρx), in the continuous form, can be obtained from an
expression similar to equation (43), i.e.

φ(ρx) =
1

Qnl(E0)

∫ E0

Enl

Qnl(E)N(E, ρx)

δρx
dE. (52)

3.4.1 Obtaining the Distribution from Monte Carlo Simulations

Similar to the method used for obtaining the depth distribution of generated X-rays,
as described in section 3.3.2, we start with the discretization the material and energy
into bins. For the material, we define

Ĝρx :=

{

ρ̂x0, ρ̂x1, . . . , ρ̂xNx
| ρ̂x0 = −

Dx

2
, ρ̂xNx

=
Dx

2
, ρ̂xi > ρ̂xi−1 ∀i = 1, 2, . . . , Nx

}

,

Gρx :=

{

ρxi = −
ρ̂xi−1 + ρ̂xi

2
; i = 1, 2, . . . , Nx

}

and

∆Gρx :=
{

∆ρxi = ρ̂xi − ρ̂xi−1; i = 1, 2, . . . , Nx

}

. (53)

This is illustrated in figure 9. The discretization of energy is identical to equation (47).
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Figure 9: Discretization of the lateral distance ρx

The electron density matrix N ∈ R
Nx×NE can then be accumulated by running a

Monte-Carlo Simulation, i.e. as

Nij =

∑

(

electron path segments with energies between Êj−1 and Êj

at lateral distances between ρ̂xi−1 and ρ̂xi

)

total no. of electrons
. (54)

φ(ρx), in the discrete form [φ(ρx)] ∈ R
N
x , is now obtained using

φ(ρxi) =
1

Qnl(E0)

Ne
∑

j=1

Q(Ej)Nij

∆ρxi
. (55)

The pseudo-code is identical to the one in algorithm 2 after defining Ĝ, G and ∆G,
the only difference being that the electron paths are subdivided along ρx instead of ρz.

3.4.2 Examples

Figure 10 shows examples of φ(ρx) obtained from Monte-Carlo simulations for pure
elemental materials. Symmetry about the origin resulting from the radial symmetry
of the interaction volume is evident here. The distribution has a sharp peak at ρx = 0
and has an exponential or Gaussian like tail. It also shows that the diameter of the
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Figure 10: Generated X-ray intensity distributions in pure elemental materials ob-
tained from Monte-Carlo simulations
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interaction volume can be significantly reduced by using a lower energy beam. This
principle can be used to increase spatial resolution in electron probe microanalysis with
low energy electron beams [5].

3.5 Radial distribution of Generated X-ray Intensity

The radial distribution φ(ρr) is a measure of the amount of X-rays generated in a hollow
cylinder with radius ρr and thickness δρr that runs through the material from its top
surface to the bottom. Extending equation (32) for the case of radial distribution, we
get

IA = CAQnl(E0)

∫

∞

0

φ(ρr) exp [−µAg(ρr)] 2πρrdρr. (56)

All terms have the same meaning as in equations (32) and (51). Here the integration is
carried out with 2πρrdr, which happens to be the cross-sectional area of the cylindrical
layer of radius r and small thickness dr. Because of the addition the ρr term in the
integrand, φ(ρr) also has different units compared to φ(ρx) and φ(ρz). In fact it has
the same units as a traditional two-dimensional distribution such as φ(ρx, ρz) and
φ(ρx, ρy). Under radial symmetry, φ(ρz) can completely describe the two dimensional
distribution φ(ρx, ρy) as

φxy(ρx, ρy) = φr

(

ρr =
√

(ρx)2 + (ρy)2
)

(57)

The equation for φ(ρr) in terms of the corresponding electron energy density distribu-
tion N(E, ρr) is then given by

φ(ρr) =
1

Qnl(E0)

∫ E0

Enl

Qnl(E)N(E, ρr)

2πρrδρr
dE. (58)

3.5.1 Obtaining the Distribution from Monte Carlo Simulations

Similar to the previous cases we start with the discretization of the material and energy
into bins. For the material, we define

Ĝρr :=
{

ρ̂r0, ρ̂r1, . . . , ρ̂rNr
| ρ̂r0 = 0, ρ̂rNr

=
Dx

2
, ρ̂ri > ρ̂ri−1 ∀i = 1, 2, . . . , Nr

}

,

Gρr :=
{

ρri = −
ρ̂ri−1 + ρ̂ri

2
; i = 1, 2, . . . , Nr

}

and

∆Gρr :=
{

∆ρri = ρ̂ri − ρ̂ri−1; i = 1, 2, . . . , Nr

}

(59)

as illustrated in figure 9. The discretization of energy remains the same as in equation
(47).
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Figure 11: Discretization of the radial distance ρr

The electron density matrix N = [Nij] ∈ R
NR×NE is obtained using

Nij =

∑

(

electron path segments with energies between Êj−1 and Êj

at radial distances between ρ̂ri−1 and ρ̂ri

)

total no. of electrons
. (60)

The histogram of φ(ρr), [φ(ρri)] ∈ R
Nr , is then obtained from

φ(ρri) =
1

Qnl(E0)

Ne
∑

j=1

Q(Ej)Nij

2πρri∆ρri
. (61)

The pseudo-code is the same as algorithm 2, but when subdividing electron paths
along ρr care must be taken to account for paths that may cut across one or more
inner bins before ending up in an outer bin, for example, as shown in figure 12.

3.6 Examples

Figure 13 contains examples of φ(ρr) obtained from NISTMonte Monte-Carlo simula-
tions. We can see a similar peak at ρr = 0 as seen at ρx = 0 in the previous case. But,
here the peak is more pronounced.
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Figure 12: Electron trajectories can cut across ρr bins

3.7 Two Dimensional Distribution of Generated X-Ray Intensity

along Radial and Vertical Directions

The two dimensional distribution φ(ρr, ρz) is a measure of the intensity of locally gener-
ated X-rays in the radial and vertical directions. While ignoring effects of fluorescence,
It is related to the total emitted X-ray intensity through the integral

IA = CAQnl(E0)

∫

∞

0

∫

∞

0

φ(ρr, ρz) exp [−µAg(ρr, ρz)] 2πρrdρrdρz, (62)

where IA, CA, Qnl(E), µA have the same meaning as in equation (32).

φ(ρr, ρz) can be determined from the two dimensional electron density distribution
N(E, ρr, ρz) as

φ(ρz) =
1

Qnl(E0)

∫ E0

Enl

Qnl(E)N(E, ρr, ρz)

2πρrδρrδρz
dE. (63)

where E0 is the electron beam energy. When there is radial symmetry, φ(ρr, ρz) de-
scribes the complete three dimensional distribution, i.e. under radial symmetry,

φxyz(ρx, ρy, ρz) = φrz

(

ρr =
√

(ρx)2 + (ρy)2, ρz
)

. (64)

3.7.1 Obtaining the Distribution from Monte Carlo Simulations

As discussed in the earlier sections we start by discretizing the material, now, both
along ρr and ρz as {Ĝρr, Gρr, ∆Gρr} and {Ĝρz, Gρz, ∆Gρz} respectively, and then the

energy as {ĜE, GE, ∆GE} (see sections 3.3.2 and 3.5.1). Figure 14a illustrates the
discretization of the material and figure 14b shows an individual at a radial distance
ρri and depth ρzj. Note that the volume of such an element is given by 2πρri∆ρri∆ρzj.
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Figure 13: Generated X-ray intensity distributions in pure elemental materials ob-
tained from Monte-Carlo simulations
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Figure 14: Discretization of the material.
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Now, if we have the discrete form of the electron density distribution given by N =
[Nijk] ∈ R

NR×Nr×Nz such that

Nij =

∑





electron path segments with energies between Êk−1 and Êk

at radial distances between ρ̂ri−1 and ρ̂ri
and at depths between ρ̂zj−1 and ρ̂zj





total no. of electrons
, (65)

we can obtain [φij] = [φ(ρri, ρzj)] ∈ R
Nr×Nz from

φ(ρri) =
1

Qnl(E0)

Ne
∑

k=1

Q(Ej)Nijk

2πρri∆ρri∆ρzi
. (66)

3.7.2 Pseudocode

The algorithm is similar to algorithm 2 but will require three levels of segmentation
for the electron paths - once along ρr, then along ρz and finally for energy E. This is
codified in algorithm 3.

3.7.3 Examples

Figure 15 and figure 16 show some examples of φ(ρr, ρz). The peak found in φ(ρr) at
ρr ∼ 0 is also found here. Here it is concentrated more at ρr = 0 and ρz = 0. The
high value of the peak completely obscures the rest of the plot.
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Data: A Monte-Carlo simulation MCSim; ρz bins (Ĝρz, Gρz, ∆Gρz and Nz); E

bins (ĜE, GE, ∆GE, and NE); Beam energy E0.
Result: [φ(ρzi)] ∈ R

Nz

initialize;
N ← [0]Nz×NE ;
φ← [0]Nz ;
start MCSim

when any event ∈ {scatter, barrier_transport, trajectory_end} fired
do

electron ← current_electron(MCSim);
xs ← previous_position(electron);
xe ← position(electron);
ρrs ← radial_distance(xprev, electron);
ρre ← radial_distance(x, electron);
P ← path(xprev, x, electron);

{pi ; i ∈ is to ie} ← segment_path(P , ρrs, ρre, Ĝρr);
for i← is to ie do

ρzs ← mass_depth(start_point(pi));
ρze ← mass_depth(end_point(pi));

{qj ; k ∈ js to je} ← segment_path(pi, ρzs, ρze, Ĝρz);
for j ← js to je do

Es ← start_energy(qj, electron);
Ee ← end_energy(qj, electron);

{rk ; k ∈ ks to ke} ← segment_path(qj, Es, Ee, ĜE);
for k ← ks to ke do

ρs← path_length(rk);
Nijk ← Nijk + ρs;

end

end

end

end

end

for i← 1 to Nr do

for j ← 1 to Nz do

sum ← 0;
for k ← 1 to NE do

sum ← sum +Qnl(Ek)Nijk;
end

φij ←
sum

Qnl(E0) · 2πρri∆ρri∆ρzj
;

end

end

Algorithm 3: Pseudocode for obtaining φ(ρr, ρz) from a Monte-Carlo simulation
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(a) Na Kα line in Na; U = 1.5

(b) Na Kα line in Na; U = 2.0

Figure 15: Generated X-ray intensity distributions in Na K-α in Na obtained from
Monte-Carlo simulations
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(a) Cu Kα line in Cu; U = 2.0

(b) Cu Kα line in Cu; U = 3.0

Figure 16: Generated X-ray intensity distributions in Cu K-α in Cu obtained from
Monte-Carlo simulations
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4 Empirical Expression for the Generated X-ray

Intensity Distribution

This section will describe the process involved in obtaining function fits. We decided to
obtain an empirical function φ(ρr, ρz) in particular because, as discussed earlier, when
the interaction volume has radial symmetry, this distribution describes the complete
three dimensional distribution of generated X-ray intensities. Moreover, when there
exists an analytical function for φ(ρr, ρz), it can be extended to the base cases of all
other forms of distributions such as φ(ρx, ρy, ρz), φ(ρx, ρz) and φ(ρx) which are for
homogeneous bulk materials and then be manipulated to include cases of heterogeneity.
For example,

φ(ρx, ρy, ρz) = φ
(

ρr =
√

(ρx)2 + (ρy)2, ρz
)

, (67)

φ(ρx, ρz) =

∫

∞

−∞

φ(ρx, ρy, ρz)dρy, (68)

φ(ρx) =

∫

∞

0

φ(ρx, ρz)dρz. (69)

4.1 Challenges Faced while Predicting an Emperical Model for the

Distribution

Three primary challenges had to be overcome while searching for functions that fit the
data obtained from Monte-Carlo simulations well. They are as follows.

4.1.1 The Intensity at r = 0

As seen in the previous sections (sections 3.4.2, 3.6 and 3.7.3), the intensity close to
the point of incidence of the beam is not well defined for both lateral distribution
φ(ρx) and radial distributions φ(ρr) and φ(ρr, ρz). The value in this region blows up
to infinity.

This is caused because a point beam is used as the source of electrons and the way
in which the Monte-Carlo algorithm is structured. In the first step of the electron
trajectory the electron is inserted into the material along the line of the electron beam,
i.e along the negative Z-axis. As a result, there is always a certain amount of X-ray
generation at ρr = 0 and ρx = 0, irrespective of how small we make the bin sizes, the
minimum of which is determined by the distribution resulting from the very first step
of electron trajectories. The distribution resulting from the first step of the electron
trajectories can even be explicitly determined from the physical models used in the
Monte-Carlo method. In our case, it can be determined from the distribution resulting
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from equation (12) as

(φ(ρz))1ststep = Qnl (E0 −∆E (|z|)) exp
(

−|z|
λ

)

(70)

where λ is the mean free path defined in equation (13) , E0 is the beam energy and
E0 −∆E(z) is the distribution of energy with depth. ∆E(z) can be determined using
an energy loss expression such as the one from Joy and Luo given in equation (18) by
substituting path length s with |z|. As this distribution always persists along the line
of incidence of the beam, the values of φ(ρx = 0) and φ(ρr = 0) increase indefinitely
as we reduce the respective bin sizes.

4.1.2 Extreme Variation in Function Values

As can be seen in figure 15 and figure 16, the distribution from ρr = 0 to ρr = Dx

has values spanning several orders of magnitude. This becomes a problem while fitting
curves because the residual from one part of the curve will dominate and skew the
results. Using a different scale such as the logarithmic scale was not advantageous
because the peak at ρr = 0 still persists and the noise in the simulation at regions
close to Rx and Dx is amplified. Other alternate solutions were considered, such as:

• Splitting the distribution into two parts along ρr, one close to ρr = 0 and another
covering the rest was attempted. However, a suitable metric defining the position
of such a splitting could not be found. Also this method results in two functions
and, potentially, more parameters and complexity.

• Obtaining two separate distributions, one considering all electron paths which
have not yet deflected by at least π/2 (90◦) from the direction of the incident
electron beam and the other for the remainder of their trajectories. This was
investigated because after the electron has deflected by a total at least π/2 from
it’s initial direction, the future deflections can be truly random, i.e. any informa-
tion about the initial direction of travel is lost and diffusion is the dominant part
of electron motion. But, this procedure did not simplify curve fitting because the
problem of scale still existed in the first distribution and the second part is still
influenced by the initial direction of travel. The latter was mostly because the
electron density distribution itself is significantly affected by the initial direction
of travel until the point of a trajectory where the deflection is more than π/2.

4.1.3 Variation in the Interaction Volume

Another challenge was the large variations in interaction volumes for the different
cases considered. This made the function parameters vary drastically for the different
cases and it would be difficult to obtain relations between the function parameters and
physical parameters, i.e. the atomic number and over voltage ratio.
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4.1.4 The Partial Cumulative Generated X-ray Intensity distribution

Our solution for the challenges discussed in section 4.1 is to use a new form the distri-
bution φ(ρr, ρz) for curve fitting. Denoted as Φr(ρr, ρr), it is obtained by integrating
φ(ρr, ρz) along ρr as follows:

Φr(ρr, ρz) :=

∫ ρr

0

φ(ρ̂r, ρz)2πρ̂rdρ̂r (71)

The resulting distribution is much easier to predict and still carries most of the infor-
mation required without much distortion. Figure 17 and figure Figure 18 give us a
good representation of this cumulative distribution Φr(ρr, ρz). Since the integration is
only along ρr, the distribution is a partial cumulative distribution. Similarly, integrat-
ing again along ρz would result in the complete cumulative distribution, but doing so
makes it harder to accurately approximate features near ρz = 0 and the maximum at
ρz = Rm.

To handle variations in the dimensions of the interaction volume, normalized values
of ρr and ρz, given by ρr∗ = 2ρr/Dx and ρz∗ = ρz/Rx respectively, are used. Dx is
the diameter of the interaction volume and Rx is the maximum depth range of the
interaction volume. This results in ρr∗ and ρz∗ that only vary between 0 and 1 within
the interaction volume. The empirical functions investigated as possible fits for the
distribution in the following sections will be along these scaled axes, i.e. Φ∗

r(ρr
∗, ρz∗).

4.1.5 Getting back the Non-Cumulative Generated X-ray Intensity Distribution

As described so far, the empirical functions will be designed for the X-ray Intensity
distribution accumulated along ρr and with scaled co-ordinates ρr∗ and ρz∗, i.e., φ.
The non-cumulative distribution can be retrieved from this distribution as follows:

• Φr(ρr, ρz) can be obtained from Φ∗

r(ρr, ρz) as

Φr(ρr, ρz) = Φ∗(ρr∗, ρz∗) = Φ∗

r

(

2ρr

Dx

,
ρz

Rx

)

. (72)

• φ(ρr, ρz) can be obtained from Φr(ρr, ρz) as

φ(ρr, ρz) =







1

2πρr

∂Φr(ρr, ρz)

∂ρr
ρr 6= 0

Φr(ρr = 0, ρz) ρr = 0
. (73)

4.2 Create a Database for Fitting

We need a database containing generated X-ray intensity distribution data on which
we can fit our predicted function. Six X-ray lines were chosen for which the database
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(a) Na Kα line in Na; U = 1.5

(b) Na Kα line in Na; U = 2.0

Figure 17: Φr(ρr, ρz) for the same configurations in figure 15
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(a) Cu Kα line in Cu; U = 2.0

(b) Cu Kα line in Cu; U = 3.0

Figure 18: Φr(ρr, ρz) for the same configurations in figure 16
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X-ray
U

1.2 1.5 2.0 3.0 5.0 7.0

C K-α 0.3492 0.4365 0.5820 0.8730 1.4550 2.0370
Na K-α 1.2768 1.5960 2.1280 3.1920 5.3201 7.4481
Si K-α 2.1942 2.7428 3.657 5.4855 9.1425 12.7995
Ca K-α 4.8182 6.0227 8.0303 12.0454 20.0757 28.1060
Cr K-α 7.1556 8.9446 11.9261 17.8891 29.8152 −
Cu K-α 10.7403 13.4254 17.9005 26.8508 − −

Table 1: Beam energies in keV for different combinations of X-ray lines and over voltage
ratios U .

Z Element Z Element Z Element
3 Li 15 P 25 Mn
4 Be 16 S 26 Fe
5 B 19 K 27 Co
6 C 20 Ca 28 Ni
11 Na 21 Sc 29 Cu
12 Mg 22 Ti 30 Zn
13 Al 23 V 31 Ga
14 Si 24 Cr 32 Ge

Table 2: List of chosen matrix elements

would be generated. They are C K-α, Na K-α, Si K-α, Ca K-α, Cr K-α and Cu K-α
lines. For each X-ray line six different over voltage ratios were also chosen. They are
1.2, 1.5, 2.0, 3.0, 5.0 and 7.0. The beam energies corresponding for all the combinations
of X-ray lines and over voltage ratios are given in table 1. Over voltage ratios resulting
in beam energies more than 30 keV were ignored and hence a few entries in table 1 are
empty. Generated X-ray intensity distribution data for all the aforementioned cases in
24 different pure elemental material matrices with elements of atomic numbers ranging
from 3 to 32 were obtained. Only elements that have solid forms at standard room
temperatures are feasible as material matrices and they are listed in table 2. This
results in a total of (6× 6− 3)× 24 = 792 unique experimental setups in the generated
database.

4.3 Predicted empirical expression

As discussed earlier in section 4.1.4, the goal is to find functional fits for the distribu-
tion Φ∗

r(ρr
∗, ρz∗). In a first step, the one dimensional distribution Φ∗

r(ρr
∗ = const, ρz∗)

was investigated for different values of ρr∗. The distributions appear like a skewed
form exponential or Gaussian distributions. Thus, first attempts were choosing simple
modified exponential and Gaussian functions, such as p1(ρx

∗)ϕ(ρx∗) where p1(ρx
∗) is
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a linear polynomial in ρx∗ and ϕ(ρx∗) is either an exponential or a Gaussian distribu-
tion. Then, other well known skewed distributions such as the log-normal distribution,
gamma distribution, exponentially modified Gaussian distribution and skewed normal
distribution were examined. Upon visual inspection of the plots of closest fits, it was
found that the skewed normal distribution gave good approximations, especially for
Φ∗

r(ρr∗ ≈ 1, ρz∗) for many of the distributions in our accumulated database.

The skewed normal distribution was first described by O’Hagan and Leonard [41] as

f(x) = 2ϕ

(

x− µ
σ

)

Φ

(

α

(

x− µ
σ

))

(74)

where ϕ(x) is the probability density function (PDF) of the Gaussian distribution
and Φ(x) is the cumulative density function (CDF) of the same distribution. σ is the
standard deviation and µ is the mean of the Gaussian distribution. Thus the skew
normal distribution can be expanded as

f(x) = 2 · 1

σ
√
2π

exp

(

−1

2

(

x− µ
σ

)2
)

·
∫ α(x−µ

σ )

−∞

1√
2π

exp

(

−t
2

2

)

dt

=
1

σ
√
2π

exp

(

−1

2

(

x− µ
σ

)2
)

[

1 + erf

(

x− µ
σ
√
2

)]

, (75)

where erf is the error function. While, this function gave good fits for Φ∗

r(ρr
∗ ≈ 1, ρz∗),

it was not ideal for smaller values of ρr∗. In fact the distribution close to ρr∗ ≈ 0 is
much closer to an exponential distribution. Hence, the skew normal distribution had
to be generalized. Azzalini [4] described a generalized class of functions of which the
skew normal distribution would be a specific case of. This class of distributions is given
by the same expression as in equation (74) but where ϕ(x) could be any distribution
with a PDF symmetric about its mean and Φ(x) is any CDF symmetric about the
same mean.

Using the same principle a function based on a version of the generalized normal
distribution was defined. The PDF and CDF of the generalized normal distribution
are given by

ϕ(x) =
β

2σΓ(1/β)
exp

(

−
∣

∣

∣

∣

x− µ
σ

∣

∣

∣

∣

β
)

and

Φ(x) =
1

2



1 + sign(x− µ)
γ
(

1
β
,
∣

∣

x−µ
σ

∣

∣

β
)

Γ(1/β)



 (76)

respectively, where Γ is the gamma function and γ is the lower incomplete gamma
function. β is a positive real number which defines the power of the term in the
exponent. Hence this distribution is also called exponential power distribution. Finally
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a function f1D(ρz
∗) = Φ∗

r(ρr
∗ = const., ρz∗) was defined by using the expressions

provided in equation (76) with mean µ = 0 and formulating them as in equation (74),
which results in

f1D(ρz
∗) = k exp

(

−
∣

∣

∣

∣

ρz∗

σ

∣

∣

∣

∣

β
)



1 + sign

(

αρz∗

σ

) γ
(

1
β
,
∣

∣

αρz∗

σ

∣

∣

β
)

Γ(1/β)



 , (77)

where σ ∈ R, β ∈ R, α ∈ R and k ∈ R are the unknown function parameters. This
function can be denoted as f1D(ρz

∗; σ, β, α, k). Defining bounds for the arguments
and parameters in this expression can make the function more easily differentiable and
hence, easier to fit and manipulate.

• ρz ≥ 0 can be assumed since the origin of the co-ordinate system is generally
placed at the point of incidence of the beam and by our convention, as discussed
in section 3.3.2, ρz is positive along the depth.

• σ which is a measure of the standard deviation or the variance can also be
restricted to be positive, i.e σ ∈ (0,∞]. σ cannot be 0 because it appears in the
denominator at several places.

• β is the power inside the exponential and is related to the kurtosis of the dis-
tribution. It was observed to be at least 1 at ρr∗ ≈ 0 and increase as ρr∗ is
increased. Hence we can restrict β as β ∈ [1,∞)

• α controls skewness of the distribution. When α is positive the distribution skews
to the right (positive side) of the origin and when it is negative the distribution
skews to the left. Since in our case the skewness is caused by the electrons exiting
the material sample as back-scattered electrons, the distribution can only skew
towards the positive side of the origin. Hence α can be restricted to be greater
than 0, i.e., α ∈ [0,∞).

• k is a parameter that controls the scale of the distribution. At ρz∗ = 0 the
equation (77) reduces to

f1D(ρz
∗ = 0) = k · (1) · [1 + 0] = k. (78)

Hence k is also a direct measure of the back-scattered electrons. k = 1 when
there is no back-scattering. For any distribution Φ∗

r(ρr
∗ = const., ρz∗), k = 1+ b,

where b ∈ [0,∞) is a factor proportional to the total number of backscattered
electrons and thus the amount of X-rays generated very close to the material
surface, within a radius of ρr∗ = const. from the origin or the point of electron
beam incidence. Hence, the value of k can be constrained as k ∈ [1,∞)

We can summarize the bounds for the function arguments and parameters as ρr∗ ≥ 0,
σ ∈ (0,∞), β ∈ [1,∞), α ∈ [0,∞) and k ∈ [1,∞). By using these bounds we can
get rid of the ‘modulo’ and ‘sign’ operators in equation (77), which makes the function
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differentiable. The final form is given by,

f1D(ρz
∗) = k exp

(

−
(

ρz∗

σ

)β
)



1 +
γ
(

1
β
,
(

αρz∗

σ

)β
)

Γ(1/β)



 . (79)

4.3.1 Extension to two dimensions

The function presented in equation (79) was fitted for all values of available ρr∗ for
a subset of the database and from the visual inspection of plots comparing the data
and the fitted function, it was found to fit reasonably well. The obtained function
parameters were studied and it was found that they all vary with respect to ρr∗ in a,
more or less, similar way which closely resembled the error function. Hence, the 2D
formulation was arrived at as follows:

• A set of function parameters for the f1D(ρz
∗; σ, β, α, k) were obtained by curve

fitting at ρr∗ ≈ 0 and analysed, say σ0, β0, α0 and k0 respectively. It was
found that setting β0 = 1, α0 = 1 and k = 1 didn’t make much difference and the
function would fit well just with one variable parameter σ0. Thus the distribution
at ρr∗ ≈ 0 can be summarized as

f1D(ρr
∗ ≈ 0, ρz∗) = exp

(

−ρz
∗

σ0

)



1 +
γ
(

1, ρz
∗

σ0

)

Γ(1)



 . (80)

Using the CDF of the exponential distribution for the second term we can also
write the distribution as

f1D(ρr
∗ ≈ 0, ρz∗) = exp

(

−ρz
∗

σ0

)[

2− exp

(

−ρz
∗

σ0

)]

. (81)

• Similarly, the function parameters that best fit the distribution at ρr ≈ 1 were
obtained and analysed. Let us call them say σ1, β1, α1 and k1 respectively. Here,
all the parameters vary depending on simulation parameters and no simplification
was possible. We can write the distribution as

f1D(ρr
∗ ≈ 1, ρz∗) = k1 exp

(

−
(

ρz∗

σ1

)β1

)









1 +

γ

(

1
β1

,
(

α1ρz∗

σ1

)β1

)

Γ(1/β1)









. (82)

This distribution, in actuality, must represent the more popular φ(ρz) because
we are already accumulating the distribution along ρr as shown in equation (71).

• We then defined a way in which the distribution could grow gradually from that
shown in equation (80) to that in equation (82) as we move from ρr∗ = 0 to
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ρr∗ = 1. The function g(ρr∗), based on the error function, describes this growth
-

g(ρr∗) = erf

(

ρx∗

λ

)

. (83)

The error function when differentiated gives a Gaussian. λ ∈ (0,∞) should be
small enough to yield g(ρr∗ = 1) ≈ 1.

The two dimensional function obtained using this method can be represented as
follows:

f2D(ρr
∗, ρz∗) = k(ρr∗) exp

(

−
(

ρz∗

σ(ρr∗)

)β(ρr∗)
)









1 +

γ

(

1
β(ρr∗)

,
(

α(ρr∗)ρz∗

σ(ρr∗)

)β(ρr∗)
)

Γ(1/β(ρr∗))









(84)

where

σ(ρr∗) = σ0 + (σ1 − σ0) · g(ρr∗),
β(ρr∗) = 1 + (β1 − 1) · g(ρr∗),
α(ρr∗) = 1 + (α1 − 1) · g(ρr∗),
k(ρr∗) = 1 + (k1 − 1) · g(ρr∗),

g(ρr∗) = erf

(

ρr∗

λ

)

. (85)

This results in a function with constant parameters λ, σ0, σ1, β1, α1 and k1. The
distribution can be represented as f2D(ρr

∗, ρz∗;λ, σ0, σ1, β1, α1, k1).

4.4 The Process of Curve-Fitting

Once a candidate function is chosen with a specific set of function parameters, the
parameters can be estimated to best for the data using an optimization algorithm.
Consider a function that connects the inputs X to the output Y as

f(X; Ω) = Y (86)

where Ω = (ω1, ω2, . . . , ωm) is a set of m parameters in the function definition of f .
For example:

• When fitting for the one-dimensional function given in equation (79), the function
f would be f1D(ρz

∗; σ, β, α, k), where X ≡ ρz∗, Y ≡ Φ∗

r(ρr
∗ = const., ρz∗) and

Ω ≡ (σ, β, α, k);
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• When fitting for the two-dimensional function in equation (84), the function f
would be f2D(ρr

∗, ρz∗;λ, σ0, σ1, β1, α1, k1), whereX ≡ (ρr∗, ρz∗), Y ≡ Φ∗

r(ρr
∗, ρz∗)

and Ω ≡ (λ, σ0, σ1, β1, α1, k1).

In order to estimate the function m parameters Ω, we need at least n ≥ m data
points in X and Y , denoted by [x1, x2, . . . , xn] and [y1, y2, . . . , yn] respectively. Typ-
ically, the parameters can only fall within specified bounds depending on the prob-
lem. We shall denote the lower bounds as (ωlb

1 , ω
lb
2 , . . . , ω

lb
m) and the upper bounds

as (ωub
1 , ω

ub
2 , . . . , ω

ub
m ). Then the problem of obtaining the function parameters can be

stated as follows.

Problem 1 Given a function f(X; Ω) = Y , find the m parameters

Ω =
(

ω1 ∈ [ωlb
1 , ω

ub
1 ], ω2 ∈ [ωlb

2 , ω
ub
2 ], . . . , ωm ∈ [ωlb

m, ω
ub
m ]
)

such that the system of n ≥ m equations

f(x1; Ω) = y1

f(x1; Ω) = y1
... =

...

f(xn; Ω) = yn

is satisfied.

It is not always possible to find an exact solution to problem 1 and hence an approx-
imate solution can be arrived at by using iterative methods that minimize the residual
ri = f(xi; Ω) − yi or a function of the residual ρ(ri) called the loss function, where
i = 1, 2, . . . , n corresponding to the data points used for fitting. The most popular
class of methods used in this regard are the least squares method, which minimize
the sum of the square of the residual or loss, i.e.

∑n
i=1(ρ(ri))

2. Examples of the loss
function include:

• ρ(r) = r - a simple linear loss function,

• ρ(r) = 2(
√

1 + |r| − 1) - a non-linear loss function which is a smooth approxi-
mation of the l1 loss,

• ρ(r) = log(1 + |r|) - a non-linear loss function which is also called as the Cauchy
loss, etc.

The simple linear loss function is significantly affected by data outliers and hence,
makes the least square methods employing them less robust. The Non-linear loss
functions have been developed, particularly, to address this problem. These non-linear
loss functions, when used, improve the robustness of the least squares algorithm, and
they differ from each other on how aggressively they ignore outliers.

The problem of minimising the loss function can thus be stated as
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Problem 2 Given a function f(X; Ω) = Y , find the m parameters

Ω =
(

ω1 ∈ [ωlb
1 , ω

ub
1 ], ω2 ∈ [ωlb

2 , ω
ub
2 ], . . . , ωm ∈ [ωlb

m, ω
ub
m ]
)

which minimizes

ρ̄ =
n
∑

i=1

ρ(ri)
2

where,

ri = f(xi; Ω)− yi.

The approximate solution for problem 2 Ωsol can be summarized as

Ωsol = min
Ω

{

n
∑

i=1

[ρ (f(xi; Ω)− yi)]2
}

. (87)

The most popular methods used for least squares approximations include the Levenberg-
Marquardt method and the trust region based methods. We used a trust region based
method, more generally called the trust region method, for the purpose of curve fitting.
The reasons for this choice include better handling of bounds, better compatibility with
non-linear loss functions and better overall robustness.

4.4.1 The Trust-Region Method

The trust region method starts with an initial approximation and makes a series of
incremental updates to this approximation until a target condition is reached. At each
k-th iteration an approximate solution Ωk obtained as an incremental update over the
previous approximation Ωk−1 is evaluated. A trust region defined by ∆k is defined
around this approximation, and a new approximate solution Ωk+1 is obtained within
this region by moving in a certain ideal direction and not exceeding the bounds of
the trust region. If the new approximation is substantially better than the current
approximation, the step is accepted and the trust region is moved to the new approx-
imation and expanded. If the new approximation is only slightly better compared to
the current approximation, the step is accepted and the trust region is moved without
altering its size. Whereas, if the new approximation is worse than the current ap-
proximation, the step is rejected and the trust region is contracted. This procedure is
repeated until a suitable approximation is obtained. The specifics of the trust region
method varies with implementations, some of the more robust implementation being
quite non-trivial. Hence, the following description will only be a representation of a
simple trust region based algorithm
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Let us assume that the algorithm is at its k-th iteration of the algorithm and that
our current approximation for Ω ∈ R

m is Ωk ∈ R
m and the corresponding sum of

squared loss is ρ̄k. A candidate step increment pk is then computed as a minimiser of
the quadratic equation which is given by

pk = min
p

{

mk(p) = ρ̄k + gT
k p+

1

2
pTBp

}

, such that ‖p‖ ≤ ∆k, (88)

where ∆k represents the size of the trust region, gk ∈ R
m is the gradient at the current

approximation Ωk and Bk ∈ R
m×m is the Hessian or an approximation to the Hessian

at the current approximation. This sub problem is the same as the Newton method
of second order and definitions of this sub-problem can vary with implementations.
The solution pk can be computed using several methods such as the Cauchy-point
method, the dog-leg method and the conjugate gradient Steihaug’s method. After the
step increment pk is computed, the new candidate solution Ωk+1 = Ωk + pk and the
corresponding squared loss ρ̄k+1 are computed. To measure the relative goodness of
the new candidate solution a new quantity τ is computed as

τ =
ρ̄k+1 − ρ̄k
0−mk(pk)

. (89)

τ is the ratio of the real improvement (ρ̄k+1 − ρ̄k) to the predicted improvement (0−
mk(pk)). To evaluate τ , three different thresholds η1, η2 and η3 are defined such that
0 ≤ η1 < η2 < η3. The evaluation is carried out as follows.

• τ < η1 indicates a poor approximation and results in the rejection of the new
solution Ωk+1. The trust region is contracted.

• If η1 ≤ τ < η2, the new solution is just good enough to be accepted, but the
trust region needs expansion.

• If η2 ≤ τ < η3, the new solution is quite good and hence is accepted, while the
size of the trust region ∆k is not altered.

• If τ ≥ η3, the new solution is considerable good and hence the trust region can
be expanded after accepting the increment.

Two scaling factors t1 and t2, such that 0 < t1 < 1 < t2, are defined and used in the
contraction and expansion of the trust region, respectively. A pseudocode for the trust
region described above is given in algorithm 4

We used the implementation of the curve-fitting and least-squares methods provided
in the scipy library for python, as found in the scipy.optimize.curve_fit and
scipy.optimize.least_squares routines respectively. We used the smooth l1 loss
function (‘soft_l1’ in scipy) given by ρ(r) = 2(

√

1 + |r| − 1) as our loss function.
The trust region method implemented in the least_squares routine is derived from
[11]. The Curve Fitting toolbox available in Matlab was also used to prototype and
improve our predicted functions, as it provides an intuitive and real-time GUI.
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Data: The function f(X,Ω);
loss function ρ;
data X = {x1, x2, . . . , xn} and Y = {y1, y2, . . . , yn};
initial approximation Ω0; tolerance ǫ;
max. no. of iterations kmax;
thresholds η1, η2 and η3;
scaling factors t1 and t2;
max. trust region size ∆max.
Result: Approximate solution Ωtrm.
Ω1 ← Ω0;

ρ̄1 ←
1
∑

i=1

[ρ(f(xi,Ω1)− yi)]2;

for k ← 1, 2, . . . , kmax do

pk ← min
p

{

mk(p) = ρ̄k + gT
k p+

1

2
pTBp

}

, such that ‖p‖ ≤ ∆k;

Ωk+1 ← Ωk + pk;

ρ̄k+1 ←
1
∑

i=1

[ρ(f(xi,Ωk)− yi)]2;

τ ← ρ̄k+1 − ρ̄k
0−mk(pk)

;

if τ < η2 then

∆k+1 ← t1∆k;
else if τ ≥ η3 then

∆k+1 ← min(t2∆k,∆Max);
else

∆k+1 ← t1∆k ;
end

if τ < η1 then

Ωk+1 ← Ωk;
ρ̄k+1 ← ρ̄k;

end

if ρ̄k+1 < ǫ then
break out of loop;

end

end

Ωtrm ← Ωk+1;

Algorithm 4: Pseudocode for the basic Trust Region Method
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4.5 Results of Curve-Fitting

Curve fitting for the predicted function was performed on all the distributions in the
generated database. We evaluated the obtained plots by tabulating the root mean
squared (rms) errors and by visually inspecting plots of the fitted function overlaid
on the data. It was observed the obtained fits were a good approximation for all the
distributions in our database with rms errors exceeding 0.1 only for a very few cases.
Figures 19, 20, 21 are a good representation of this. The distributions in these figures
were chosen so as to include all major variations in the shape of the distributions and
as can be seen from these plots the model provides good approximation for all of them,
i.e. there are not any major deviations in the shape of the curves compared to the
data.

Figure 22 shows plots of the rms error of the obtained fits for each of the considered X-
rays against the over-voltage ratios U and atomic numbers Z of the matrices. The error
seems to increase with increase in the over-voltage ratio and seems to be unaffected
by the atomic number of the matrix. Fig 19a, which shows the distribution and fit for
the C Kα line for a high over-voltage ratio of 7, represents one such case of a high rms
error of about 1.2. As can be seen from the plot there is still only a minor deviation
from the data.

4.5.1 Comparison with the PAP Model

Since our model describes the partial cumulative distribution Φr(ρr, ρz), the approxi-
mation for φ(ρz) is already contained in the model, i.e.

φ(ρz) =

∫

∞

0

φ(ρr, ρz)2πρrdρz ≈
∫ Dx/2

0

φ(ρr, ρz)2πρrdρz = Φr

(

ρr =
Dx

2
, ρz

)

.

(90)

Transforming both sides to the scaled co-ordinate ρr∗ and ρz∗ would result in

φ∗(ρz∗) = Φ∗

r (ρr
∗ = 1, ρz∗) . (91)

This distribution can be readily obtained from equation (82). Hence, we wanted to
compare φ(ρz) obtained from our model with the popular PAP model. The PAP model
is defined based on the features of the distribution - the integral of the distribution F ,
the range of ionizationRx, the depth of maximum generated X-ray intensityRm and the
surface X-ray generation intensity φ(0). Hence the PAP model can be computed easily
if we already have the distribution from which F , Rx, Rm and φ(0) can be determined,
the PAP description for the distribution can be obtained. Some, comparisons of our
model and the PAP model can be found in Figure 23. From the plots it can be seen
that our model more closely approximates the distribution. This is likely because our
model is more flexible and accommodates various curvatures controlled by the power
β inside the exponential term, whereas the PAP model is restricted to be parabolic or
quadratic in nature.
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(a) C Kα line in Be; U = 7.0

(b) Na Kα line in Cr; U = 1.2

Figure 19: Curve fits for Φr(ρr, ρz); points represent data and the surface represents
the fitted function
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(a) Si Kα line in Ca; U = 1.5

(b) Ca Kα line in Ti; U = 3.0

Figure 20: Curve fits for Φr(ρr, ρz); points represent data and the surface represents
the fitted function
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(a) Cr Kα line in B; U = 2.0

(b) Cu Kα line in Ge; U = 3.0

Figure 21: Curve fits for Φr(ρr, ρz); points represent data and the surface represents
the fitted function
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Figure 22: The root mean squared (rms) error in the obtained curve fits
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Figure 23: Comparison of φ(ρz) obtained from our model with the PAP model.

61



4.5.2 Limitations of our Model

Our model approximates very well the distribution Φ∗

r(ρr
∗, ρz∗) near ρr = 1. Close to

ρr = 0, the distribution changes more drastically, in general, compared to what can
be estimated using our model. Hence our distribution lags the actual distribution as
we move from ρr∗ = 0 to ρr∗ = 1, but catches up pretty quickly. Figure 24 shows
how the function performs at various radial distances. It should also be noted when
moving along ρr∗ from 0 to 1 much of the change happens close to ρr∗ = 0. This is
also depicted in the plots in figure 24. A side effect of our model underestimating the
drastic changes near ρr = 0 is that when the expression is differentiated, according to
equation (73), in order to obtain φ(ρr, ρz) the resulting peak distribution at ρr ≈ 0
would deviate much more from the data. This is depicted in figure 25 for two example
cases. This can be a problem when there are heterogeneities in the sample with changes
in concentrations particularly in this region, i.e. close to ρr ≈ 0.

4.6 Dependence of the Parameters on Simulation parameters

The variation of the obtained fitted function parameters with respect to the simulation
parameters, namely the atomic number Z of the material matrix and the electron
beam energy E0, here expressed as over-voltage ratio U , was also investigated. Several
polynomial based functions of U and Z were found to predict these parameters. These
functions are listed below.

λ : A two dimensional polynomial of degree 2 and 1 with respect to U and Z respec-
tively was found to give a decent approximation for λ. The polynomial is as
follows:

λ(U,Z) = pλ00 + pλ10U + pλ01Z + pλ20U
2 + pλ11UZ. (92)

σ0 : A similar two dimension polynomial of degree 2 and 1 with respect to U and Z
respectively, but inverted, was found to give a good approximation of σ0, i.e.

1

σ0(U,Z)
= pσ0

00 + pσ0

10U + pσ0

01Z + pσ0

20U
2 + pσ0

11UZ (93)

or

σ0(U,Z) =
[

pσ0

00 + pσ0

10U + pσ0

01Z + pσ0

20U
2 + pσ0

11UZ
]−1

. (94)

σ1 : It was found observed σ1 and β1 varied somewhat similarly and hence curve fitting
was attempted for the quantity 1/(σ1β1). With this manipulation, a simple two
dimensional polynomial, linear in both U and Z was found to be sufficient in
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Figure 24: Fit obtained by our model w.r.t ρz at various radial distances ρr∗. ‘d’
represents data and ‘f’ represents the fitted model
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(a) Si Kα line in Ca; U = 1.5

(b) Cu Kα line in Ge; U = 3.0

Figure 25: Comparizon between φ(ρr, ρz) obtained from numerical differentiation of
the fitted model and the data from Monte-Carlo Simualtions. Deviation
near ρr ≈ 0 is apparent.
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order to approximate the σ1. The polynomial approximation used can be is as
follows

1

σ1(U,Z)β1(U,Z)
= pσ1

00 + pσ1

10U + pσ1

01Z (95)

or

σ1(U,Z) =
1

β1(U,Z)
[pσ1

00 + pσ1

10U + pσ1

01Z]
−1 . (96)

β1 : The approximation for β1 is obtained by an inverted two dimensional polynomial
similar to σ0. The approximating function is given by,

1

β1(U,Z)
= pβ1

00 + pβ1

10U + pβ1

01Z + pβ1

20U
2 + pβ1

11UZ (97)

or

β1(U,Z) =
[

pβ1

00 + pβ1

10U + pβ1

01Z + pβ1

20U
2 + pβ1

11UZ
]−1

. (98)

α1 : It was found that a two dimensional polynomial of degree 2 in U ad degree 1 in
Z could approximate α1 well. It is given by,

α1(U,Z) = pα1

00 + pα1

10U + pα1

01Z + pα1

20U
2 + pα1

11UZ (99)

k1 : A similar two dimensional polynomial to that used for the approximation of α
could be used for the approximation of k1, i.e.

k1(U,Z) = pk100 + pk110U + pk101Z + pk120U
2 + pk111UZ (100)

Curve fitting was performed using the Curve Fitting toolbox available in Matlab.
The parameters of these functions that estimate the parameters used in the empirical
model for Φ∗

r(ρr
∗, ρz∗) as functions of U and Z are tabulated in table 3 for the six

X-ray lines considered. Further, as examples, figure 26 shows the obtained fits for the
parameters of C Kα line and figure 27 shows the obtained fits for the parameters of
Cr Kα line. As can be noted from the aforementioned tables and figures, we require
a separate set of parameters for every X-ray line. This could be a major drawback of
the method. Since the effect of inelastic cross-sections, corresponding to the X-ray line
being measured, is integrated into the approximation of φ it is not possible to isolate
the influence of the X-ray line being measured.
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param.

X-ray
C K-α Na K-α Si K-α Ca K-α Cr K-α Cu K-α

pλ00 0.2152 0.2689 0.2793 0.2871 0.2704 0.2502
pλ10 0.0628 0.06632 0.06185 0.05712 0.05084 0.03492
pλ01 -0.01137 -0.004052 -0.0017 0.0005057 0.002787 0.005897
pλ20 -0.0119 -0.02148 -0.01971 -0.01508 -0.009105 -0.002875
pλ11 -0.0005675 0.0001905 -0.0007542 -0.004203 -0.003621 -0.002234
pσ0

00 10.88 29.09 43.24 70.04 77.19 76.02
pσ0

10 5.545 15.93 22.91 31.06 30.38 19.09
pσ0

01 -0.8858 -1.739 -1.733 2.007 0.966 1.432
pσ0

20 -0.5978 -1.94 -3.345 -7.382 -9.066 -5.986
pσ0

11 -0.6198 -1.022 -0.8613 2.968 2.984 3.025
pσ1

00 3.152 3.297 3.31 3.402 3.431 3.452
pσ1

10 0.03859 0.04248 0.005444 0.04325 0.000894 0
pσ1

01 -0.04529 -0.0743 -0.08516 -0.1023 -0.1082 -0.1218
pβ1

00 0.5847 0.5313 0.5192 0.5289 0.5324 0.5362
pβ1

10 -0.02038 -0.04227 -0.02896 -0.01926 -0.00466 0.007629
pβ1

01 0.04023 0.05032 0.04999 0.04966 0.05157 0.05639
pβ1

20 -0.02318 0.005762 0.003811 -0.02527 -0.02491 -0.02426
pβ1

11 -0.0002961 -0.007288 -0.007887 -0.006772 -0.008086 -0.008156
pα1

00 1.665 1.696 1.822 1.839 1.782 1.559
pα1

10 0.7576 0.6344 0.6709 0.8395 0.8429 0.6898
pα1

01 0.2317 0.2349 0.2739 0.3857 0.4103 0.4269
pα1

20 -0.3451 -0.2102 -0.2485 0.05064 -0.0237 0.01342
pα1

11 0.09934 0.02213 0.0544 0.1314 0.1157 0.08212
pk100 1.285 1.417 1.438 1.498 1.424 1.335
pk110 0.1874 0.2001 0.2 0.2 0.1707 0.09984
pk101 0.009355 0.06924 0.08309 0.09207 0.08387 0.07635
pk120 -0.03206 -0.06352 -0.0593 -0.1062 -0.08182 -0.04631
pk111 0.01749 0.03971 0.03238 0.02966 0.02984 0.03078

Table 3: Results of curve fitting for the parameters obtained in section 4.5 as functions
of the over-voltage ratio U and atomic no. Z of the matrix element
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(a) Parameter λ (b) Parameter σ0

(c) Parameter σ1 (d) Parameter β1

(e) Parameter α1 (f) Parameter k1

Figure 26: Curve fitting results for the model parameters for C Kα X-ray line as func-
tions of over-voltage ratio U and atomic no. of the matrix element Z
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(a) Parameter λ (b) Parameter σ0

(c) Parameter σ1 (d) Parameter β1

(e) Parameter α1 (f) Parameter k1

Figure 27: Curve fitting results for the model parameters for Cr Kα X-ray line as
functions of over-voltage ratio U and atomic no. of the matrix element Z
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5 Conclusion

The goal of this project was to develop an empirical model for the generated X-ray
intensity distribution φ in Electron Probe Micro-analysis in multiple dimensions. In
this regard, the vertical distribution φ(ρz), the lateral distribution φ(ρx), the radial
distribution φ(ρr) and the two dimensional distribution φ(ρr, ρz) were obtained from
Monte-Carlo simulations for several examples and studied. The possibility of modelling
φ(ρr, ρz) was investigated. Due to difficulties involved in directly modelling φ(ρr, ρz),
an empirical model for describing a partial cumulative version of this distribution,
given by Φr(ρr, ρz) =

∫ ρr

0
φ(ρ̂r, ρz)2πρ̂rdρ̂r was developed. The model is given by

Φr(ρr, ρz) = k(ρr∗) exp

(

−
(

ρz∗

σ(ρr∗)

)β(ρr∗)
)









1 +

γ

(

1
β(ρr∗)

,
(

α(ρr∗)ρz∗

σ(ρr∗)

)β(ρr∗)
)

Γ(1/β(ρr∗))









,

σ(ρr∗) = σ0 + (σ1 − σ0) · g(ρr∗),
β(ρr∗) = 1 + (β1 − 1) · g(ρr∗),
α(ρr∗) = 1 + (α1 − 1) · g(ρr∗),
k(ρr∗) = 1 + (k1 − 1) · g(ρr∗),

g(ρr∗) = erf

(

ρr∗

λ

)

,

ρr∗ =
2ρr

Dx

and ρz∗ =
ρr

Rx

,

where Dx and Rx are the maximum diameter and depth range of X-ray generation
respectively. The model was evaluated using curve fitting on a database of 792 unique
examples and was found to approximate the distributions quite well with root mean
squared errors generally lower than 0.1. Visual inspection of the plots of the fitted
functions overlaid on the distribution data also reveal the same. Another set of em-
pirical functions are proposed that approximate the parameters λ, σ0, σ1, β1, α1 and
k1 as functions of the over-voltage ratio U and the atomic number of the matrix el-
ement Z. Curve fitting was also performed on these functions and they were indeed
found to be good approximations. The drawbacks of the model include - slightly poor
approximation near ρr = 0 and the relatively large number of parameters required to
estimate the model parameters from U and Z and their dependence on the X-ray line
being measured. Nevertheless, the project shows that the generated X-ray intensity in
two dimensions can indeed be modelled using empirical expressions and has revealed
the challenges and limitations involved. Thus, we believe that the major goals of this
project have been achieved.
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5.1 Outlook

In this section possible improvements to the model suggested in this work as well as
alternate techniques for modelling the distribution will be discussed.

The empirical model suggested in this work is fitted and thereby verified only on ho-
mogeneous single element bulk matrices. The implications of using homogeneous com-
position of elements as matrices on the proposed model must be investigated. Similarly,
more types of samples such as thin layer samples, horizontal and vertical multi-layered
samples and micro-particles must be investigated. The Monte-Carlo simulations used
to acquire data can also be improved by carefully selecting the physical models used for
the many interactions along simulated electron trajectories. For instance, the inclusion
of secondary electron generation, which was ignored in the Monte-Carlo simulations
used in the project, could be investigated. Insights from experimentally obtained X-ray
intensity distribution can also be helpful.

A complete sensitivity analysis of the parameters in the empirical model must also
be carried out. This can reveal flaws in the model and help in optimizing and making
the model more manipulatable. Further, it would be helpful if the number of free
parameters can be reduced. This can be done, for instance, by relating the obtained
parameters to special features of the distribution such as the total ionization probability
(area/volume under the X-ray intensity distribution) as is done in the PAP model [46]
or to the physics and physical properties involved in the motion and scattering of
electrons as is done in the modified Gaussian model for φ(ρz) [42]. In our model,
only the parameter k1 is related to such a feature, i.e. the value φ(ρz = 0) which
has been studied by extensively in the context of thin film coatings [37], [3] [53] [32].
Restricting the parameters in this way will reduce the degrees of freedom for curve
fitting, which will help avoid the common pitfalls of least squares curve-fitting such
as convergence to local minima. It will also make the road for further improvements
easier as better approximations are obtained for these individual features the function
parameters could be based on.

Further, alternative ways to model the generated X-ray intensity distribution can
be explored. One such way would be to model the electron energy density distribution
N and then integrate it with the inelastic cross-section Qnl(E) separately to obtain
the generated electron intensity distribution φ. The electron energy distribution has
one more dimension than φ because it contains information about both the density of
electrons in a region of the sample and the distribution of energies for the electrons
in that region. Hence, it might be necessary to employ some form of dimensionality
reduction to make this method viable. But, this method has the advantage of isolating
the effect of the X-ray line being measured. Such a model would only have parameters
that depend on the matrix and the electron beam unlike our model which currently
has different sets of parameters depending on the X-ray line being measured.
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