Name:	MatrNr.:	_ 2

Aufgabe 1. Gegeben sei die Transportgleichung

$$\langle \nabla u(x,y), (1,1) \rangle = e^{x+2y} - u(x,y) \qquad (x,y) \in \Omega := \mathbb{R}^2 \backslash \overline{\mathbb{M}}$$
$$u(x,y) = 0 \qquad (x,y) \in \mathbb{M} := \{ (\xi,\eta) \in \mathbb{R}^2 : \eta = 0 \}$$

- (a) Geben Sie die charakteristischen Grundkurven für diese Transportgleichung an.
- (b) Ermitteln Sie mithilfe der Charakteristikenmethode einen Kandidaten u für die Lösung dieser Transportgleichung.
- (c) Verifizieren Sie, dass Ihr Kandidat u aus Teil (b) die Transportgleichung erfüllt.

1+2.5+0.5 Punkte

Name:	MatrNr.:	3

Name:	MatrNr.:	4

5

Aufgabe 2. Sei $f \in S(\mathbb{R})$ eine ungerade Funktion, d.h. f(x) = -f(-x) für alle $x \in \mathbb{R}$. Die Sinustransformierte von f ist definiert durch

$$\mathcal{F}_s(f)(\xi) := \sqrt{\frac{2}{\pi}} \int\limits_0^\infty f(x) \sin(x\xi) dx.$$

Weiterhin bezeichnen

$$\mathcal{F}(f)(\xi) := \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(x)e^{-ix\xi}dx$$

die Fouriertransformierte, und

$$\mathcal{F}^{-1}(g)(\xi) := \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} g(x)e^{ix\xi} dx$$

die inverse Fouriertransformierte.

(a) Zeigen Sie den Zusammenhang

$$\mathcal{F}(f) = -i\mathcal{F}_{s}(f).$$

(b) Benutzen Sie das Ergebnis aus (a) um die Parseval-Gleichung

$$\int_{0}^{\infty} |f(x)|^{2} dx = \int_{0}^{\infty} |\mathcal{F}_{s}(f)(\xi)|^{2} d\xi$$

zu zeigen.

(c) Finden Sie einen Zusammenhang zwischen der Sinus- und der inversen Fouriertransformation, und zeigen Sie

$$f = \mathcal{F}_{S}(\mathcal{F}_{S}(f)).$$

Name:	MatrNr.:	6
-------	----------	---

Name:	MatrNr.: 7

Name: _____ Matr.-Nr.: ____ 8

Aufgabe 3. Gegeben sei die Potentialgleichung

$$\Delta u(x) = 0,$$
 $x \in B_1(0) \subset \mathbb{R}^n$
 $u(x) = g(x),$ $x \in \partial B_1(0).$

Es sei $u \in C(\overline{B_1(0)}) \cap C^2(B_1(0))$ eine Lösung dieser Gleichung für

$$g(x) = \frac{1}{2}\langle e_n + x, x \rangle, \quad x \in \partial B_1(0),$$

wobei e_n der n-te Einheitsvektor in \mathbb{R}^n bezeichnet. Berechnen Sie u(0).

2 Punkte

Name:	MatrNr.:	9

Name: ______ Matr.-Nr.: _____ 10

Aufgabe 4. Bestimmen Sie eine Lösung der Wärmeleitungsgleichung des Rand-Anfangswertproblems:

$$\partial_t u(t,x) - \triangle u(t,x) = 0, \qquad t > 0, x \in (-\pi,\pi)$$

$$u(t,-\pi) = u(t,\pi), \qquad t > 0$$

$$\partial_x u(t,-\pi) = \partial_x u(t,\pi), \qquad t > 0$$

$$u(0,x) = \cos(2x), \qquad x \in (-\pi,\pi)$$

4.5 Punkte

Name:	MatrNr.:	11
ivallic	MatiINI	1

Name:	MatrNr.:	12

Name:	MatrNr.:	13
i varrici	IVIALI. IVIII	10

Aufgabe 5. Betrachten Sie das Anfangswertproblem

(AWP)
$$y' = -\lambda y$$
, $y(0) = y_0$, $\lambda > 0$.

- (a) Geben Sie jeweils einen Ausdruck in Abhängigkeit von y_0 für das explizite Euler-Verfahren sowie die Trapezmethode mit der Schrittweite h zur Berechnung einer Approximationslösung von (AWP) an.
- (b) Untersuchen Sie das Verhalten der exakten Lösung von (AWP) für $t \to \infty$. Ergibt sich eine Bedingung an das explizite Euler-Verfahren bzw. die Trapezmethode, damit das gleiche Verhalten für die jeweilige Approximationslösung zutrifft?
- (c) Welche Stabilitätsbegriffe erfüllen diese Verfahren?

1.5+1.5+1 Punkte

Name:	MatrNr.:	14

Name:	MatrNr.:	15

Aufgabe 6. Die Auslenkung eines idealisierten Pendels sei durch folgende Differentialgleichung für den Winkel $\phi(t)$ gegeben:

$$\phi''(t) + \sin(\phi(t)) = 0$$
, $\phi(0) = 0$, $\phi'(0) = 1$

- (a) Transformieren Sie die Differentialgleichung auf ein System erster Ordnung.
- (b) Führen Sie 2 Schritte des expliziten Euler-Verfahrens mit Schrittweite *h* durch.
- (c) Stellen Sie eine neue Differentialgleichung mit denselben Randbedingungen unter Ausnutzung der häufig verwendeten Näherung für kleine Winkel, $\sin(\phi) \approx \phi$, auf. Lösen Sie die neue Differentialgleichung und vergleichen Sie den Wert $\phi(2h)$ mit dem Ergebnis aus (b).

1+1+1 Punkte

Name:	MatrNr.:	16
-------	----------	----

Name:	MatrNr.:	17
italiioi		- .

Aufgabe 7. Gegeben sei folgendes lineares 2-Schritt-Verfahren:

$$y^{j+2} = y^{j+1} + \frac{h}{3}(-\frac{1}{4}f(t_j, y^j) + \alpha f(t_{j+1}, y^{j+1}) + \frac{5}{4}f(t_{j+2}, y^{j+2})), \quad \alpha \in \mathbb{R}.$$

- (a) Zeigen Sie, dass ein α existiert, so dass das Verfahren Konsistenzordnung 3 besitzt.
- (b) Gibt es ein α so dass die Konsistenzordnung sogar 4 ist?
- (c) Was können Sie über die Konvergenzordnung des Verfahrens aussagen?

2+0.5+1 Punkte

Name:	MatrNr.:	18

Name:	MatrNr.:	19

Aufgabe 8. Gegeben sei die eindimensionale Wärmeleitungsgleichung

$$\partial_t u(x, t) = \partial_x^2 u(x, t), \ t > 0, \ x \in (0, 1)$$
 (1)

mit den Anfangswerten

$$u(x, 0) = u_0(x)$$

und den Randwerten

$$u(0, t) = u(1, t) = 0.$$

Außerdem sei das Gitter $0=x_0,\ldots,x_n=1$ mit $x_{j+1}-x_j=h_x$, $0\leq j\leq n-1$ gegeben.

(a) Diskretisieren Sie die Ortsableitung in Gleichung (1), unter der Annahme

$$y_i(t) \approx u(x_i, t),$$

um ein System gewöhnlicher Differentialgleichungen der Form

$$y' = Ay$$
, $A \in \mathbb{R}^{(n-1)\times(n-1)}$, $y \in \mathbb{R}^{n-1}$

zu erhalten.

(b) Formulieren Sie die Trapezregel und das implizite Eulerverfahren (jeweils mit konstanter Schrittweite h_t) zur Lösung der Systems aus Teil (a). Welches Verfahren würden Sie hinsichtlich der Konsistenzordnung bevorzugen?

1.5+1.5 Punkte

Name:	MatrNr.:	20

Name:	MatrNr.:	21
Ivallic.	1VIACI 1VI	~ 1

Name:	MatrNr.:	22

Name: MatrNr.: 23	Name:	MatrNr.:	23
-------------------	-------	----------	----

Name:	MatrNr.:	24