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On the Fokker-Planck Description of the
Dense Flows

Abstract
The classical Navier-Stokes-Fourier system fails to represent the physics of the
flow accurately, once a large departure from the equilibrium is concerned. How-
ever, main stream methodologies available for computational studies of such flows
such as Molecular Dynamics (MD), e.g. see Ullo and Yip, 1984, Direct Simulation
Monte-Carlo (DSMC), Bird, 1994, and consistent Boltzmann Algorithm (CBA),
Alexander et al., 1995, suffer from quite poor efficiency in particular at high pres-
sure scenarios. The Fokker-Planck model (FP) has been recently introduced by
Jenny et al., 2010; Gorji et al., 2011 in order to provide an alternative of DSMC
at not too large Knudsen numbers (Kn). It is this property of the FP model which
encouraged this project to address the non-equilibrium dense gas flows in a gener-
alized FP framework. In order to cope with that, the Enskog equation is adopted as
the governing equation of the dense hard sphere gas. In this thesis, a new advection
term is introduced as a reduced order approximation of the Enskog operator. To
this end, dense gas effects in the pressure tensor as well as heat fluxes are obtained
in accordance with the Enskog expressions. The proposed dense gas FP model is
validated in terms of transport properties in comparison with CBA and reference
solution.
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Chapter 1

Introduction

The state of a fluid can be fully determined by knowing the position and the velocity
of each constituent particle. Using Newton’s law of motion, every state in future
can be calculated deterministically. However, since number of particles is typically
very large, the corresponding computations become demanding. This is why the
classical Molecular Dynamics (MD) is only useful for systems with a few number
of particles.

To cope with this problem, the concept of the probability density was utilized in
order to describe the state of the fluid. Since typically we are interested only in
some macroscopic properties of the fluid flow, the notion of the probability density
is sufficient to accurately predict the macroscopic behavior of the flow. This is a
very useful concept because, opposed to MD type of approach, here the underlying
variable has a solution domain which is independent of the number of particles.

The evolution of the probability distribution function defined over velocity and po-
sition can be described by the Boltzmann equation in the case of dilute gases. Yet,
due to complexity of the collision integral, Monte-Carlo methods such as Direct
Simulation Monte Carlo (DSMC) of Bird, 1994 are typically employed. Similar
to the Boltzmann operator, DSMC assumes point particles which provide an ideal
gas description. In order to include dense gas effects, Alexander et al., 1995 pro-
posed a simple modification to DSMC, known as Consistent Boltzmann Algorithm
(CBA). Since the collision rate in both DSMC and CBA is a function of density,
these methods become very expensive as dense gas flows are considered.

In struggle of finding an efficient method with no correlation with respect to the
collision rate, the Fokker-Planck (FP) description has been introduced recently by
Jenny et al., 2010; Gorji et al., 2011 to describe the Boltzmann operator as an effi-
cient alternative to DSMC. The FP model was developed furthermore for diatomic
gases by Gorji and Jenny, 2013. Yet, the available FP model again assumes point
particles instead of particles with an actual diameter. The success of the FP model
for dilute gas flow simulation together with the fact that the resulting solution algo-
rithm does not employ collision encouraged us to further develop the FP model for
dense gases. Therefore, the objective of this thesis is to extend the FP model for
dense gases as an efficient alternative of CBA.

There are many applications where an accurate yet efficient mathematical model for
the dense gas is highly appreciated. Examples include high pressure shock tubes,
cold plasmas, Sonoluminescence, dense nozzle flow, etc. Moreover, this thesis can
be considered as a first step to model non-equilibrium liquid phase with a kinetic
model.
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In this thesis, first in chapter 2 a short review of the kinetic theory is given. Then,
Monte-Carlo methods based on Bird’s idea, i.e. DSMC and CBA, will be reviewed
in chapter 3. In chapter 4, the current FP model of dilute gases will be reviewed.
In chapter 5, a new term in the FP model will be proposed which models the dense
gas effects in the pressure tensor and the heat fluxes. Some simple simulations are
performed and the results are reported in chapter 6 to assess our modeling approach.
At the end, conclusion and outlooks for further studies are given in chapter 7.
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Chapter 2

Kinetic Theory

Instead of field quantities concerned in the continuum fluid mechanics, the kinetic
theory focuses on the distribution functions in the whole phase space. The proba-
bility density function (PDF) f (V, x, t) is defined such that f (V, x, t)d3V gives the
probability of finding a particle inside the infinitesimal volume d3V around V at
the position x and time t. Usually the mass density function (MDF) is used in the
kinetic theory

F (V, x, t) = ρ(x, t) f (V, x, t), (2.1)

where ρ is density of gas. By integrating MDF over the velocity space, we obtain
the density

ρ(x, t) =

∫
R3
F d3V1. (2.2)

The expected value of a quantity φ(V) can be found based on the MDF

〈ψ(M)〉 =
1
ρ

∫
R3
φ(V)F d3V, (2.3)

where M(t) is a random variable from the space V. Macroscopic properties can
be also obtained from MDF. The bulk velocity is nothing but mean velocity of
particles, i.e. for i ∈ {1, 2, 3} being index of velocity domain

Ui =
1
ρ

∫
R3
FVid3V

= 〈Mi〉. (2.4)

The temperature in the kinetic theory is defined in terms of the fluctuating velocity,
i.e.

1 d3V is short for dV1dV2dV3
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T =
1

3nkb

∫
R3
F v′jv

′
jd

3V (2.5)

=
m

3kb
〈M′jM

′
j〉, (2.6)

with m the particle mass, kb the Boltzmann constant, v′i = Vi −Ui and n the number
density. Note that the Einstein notation is used everywhere in this thesis unless it is
mentioned otherwise.

Furthermore, the shear stress and the heat fluxes are closed once the MDF is known.
The pressure tensor is calculated by taking second moment v′iv

′
j of the MDF

πi j =

∫
R3
F v′iv

′
jd

3V

= ρ〈M′i M′j〉. (2.7)

Like any other tensor, the pressure tensor can be decomposed into two parts: trace
and deviatoric part. The trace gives the pressure while the deviotoric part leads to
the shear stress

τi j = −π〈i j〉

= −ρ〈M′
〈iM

′
j〉〉, (2.8)

P = πii/3

= ρ〈M′i M′i 〉/3, (2.9)

where τ indicates the shear stress and P the pressure. Therefore

πi j = −τi j + δi jP and (2.10)

ρ〈M′i M′j〉 = ρ〈M′
〈iM

′
j〉〉 + ρ〈M′kM′k〉δi j/3. (2.11)

Bra and ket in the subscript represent the deviatoric part of the tensor. By taking
the third moment v′iv

′
jv
′
j of the MDF, we get the heat flux vector

qi =
1
2

∫
R3
F v′iv

′
jv
′
jd

3V

=
1
2
ρ〈M′i M′jM

′
j〉. (2.12)

As it was mentioned before, in many situations the gas may exhibit non-continuum
behaviors, such that the macroscopic quantities do not form a closed set of PDEs,
but depend on microscopic collisions. This scenario which happens e.g. in shocks
or micro/nano systems can be characterized by the Knudsen number
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Kn =
λ

L
, (2.13)

where λ indicates the mean free path and L is a macroscopic length scale of the
problem under consideration. The mean free path is simply the average distance
that particles travel between successive collisions. For hard sphere gas at the equi-
librium one can show that

λ =
1

√
2nπσ2

, (2.14)

where σ is the molecular diameter, see Bird, 1994.

2.1 Evolution of MDF

The evolution of a single particle distribution F (V, x, t) in gas may be expressed in
a generic form

∂F

∂t
+
∂(FVi)
∂xi

+
∂(FGi)
∂Vi

= S coll(F ), (2.15)

where S coll is the collision operator accounting for the binary collisions among
molecules and G represents external force per mass. Considering dilute gas and
molecular chaos assumptions one can derive the Boltzmann operator while by in-
cluding the diameter of particle the Enskog operator can be obtained.

It is important to note that any collision operator for a monatomic gas must conserve
mass, momentum and energy. In other words, for any Ψcons ∈ {1,Vi,V jV j} the
following condition must hold

∫
R3

ΨconsS coll(F )d3V = 0 for any F . (2.16)

Moreover, considering a homogeneous setting, i.e. F (V, t) the equilibrium is a
Maxwellian distribution

FM =
ρ

(2πkbT/m)3/2 exp
[
−

(Vi − Ui)(Vi − Ui)
2kbT/m

]
and (2.17)

S (F ) = 0→ F = FM. (2.18)

Therefore, any description for S coll(F ) must satisfy these two conditions, i.e. eq. (2.16)
and eq. (2.18), to be a valid model from physical principles. Also, in order to ob-
tain identical transport properties for any S model(F ) compared to a true collision
operator S coll(F ), their first few moments should match
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∫
R3

ΨS model(F )d3V =

∫
R3

ΨS coll(F )d3V, (2.19)

where Ψ = {ViV j,ViV jVk, ...,Vi1 ...ViM }. This condition will be used for obtaining
drift and diffusion coefficients of the Fokker Planck description in chapter 4. By
taking moments Φ = {v′

〈iv
′
j〉, v
′
iv
′
jv
′
j} of homogeneous transport equation, one can

show that the relaxation rate of shear the stress and heat fluxes are

∂πi j

∂t
=

∫
R3

v′
〈iv
′
j〉S colld3V and (2.20)

∂qi

∂t
=

1
2

∫
R3

v′iv
′
jv
′
jS colld3V. (2.21)

2.2 Boltzmann Operator

By adopting two main assumptions, the Boltzmann equation describes the evolution
of F with S Boltz being the collision operator.

The first assumption is the dilute gas model. Accordingly, the molecules are consid-
ered to be point particles. Therefore, the MDF of colliding particles are at the same
point in space. This simplifies the collision integral and is valid when the gas is
dilute enough. Meaning that the average distance between particles is significantly
larger than molecular diameter.

The second assumption is the principle of molecular chaos. A bi-
nary collision involves the distribution of two particles in the phase space,
namely F (V1,V2, x1, x2, t). The molecular chaos assumption is simply that
F (V1,V2, x1, x2, t) = F (V1, x1, t)F (V2, x2, t).

Hence, Boltzmann operator can be derived for S coll

S Boltz =

∫
R3

∫ 2π

0

∫ +∞

0

(
F (V∗, x)F (V∗1, x) − F (V, x)F (V1, x)

)
gb̂db̂dε̂d3V,

(2.22)

where V and V1 are velocities of the colliding couple before collision whereas
V∗ and V∗1 represent the corresponding post-collision velocities. Here, g is the
magnitude of relative velocity g = |V − V1|. b̂ and ε̂ are collision parameter and
collision angle ε̂ ∈ [0, 2π], respectively. For derivation and details of the collision
integral, see e.g. Chapman and Cowling, 1953.

One can obtain relaxation rates of different velocity moments based on S Boltz by
taking moments of S boltz(F ), e.g.
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Pi j =

∫
R3

v′
〈iv
′
j〉S

Boltzd3V and (2.23)

Pi =

∫
R3

v′iv
′
jv
′
jS

Boltzd3V. (2.24)

Assuming Maxwell molecules and substituting Pi j and Pi in eqs. (2.20) and (2.21)
one can get

∂πi j

∂t
= −

P
µ
πi j and (2.25)

∂qi

∂t
= −

2
3

P
µ

qi, (2.26)

where µ is the viscosity in the Chapman-Enskog limit, see Cercignani, 1988.
Therefore, the Boltzmann collision operator correctly predicts the viscosity and
the Prandtl number at the hydrodynamic limit. In monatomic gases at the hydrody-
namic limit Pr = 2/3, see Truesdell and Muncaster, 1980, which is consistent with
S Boltz.

2.2.1 Moments of the Boltzmann Equation

Multiplying both sides of the Boltzmann equation with ψ ∈ {1,Vi,ViVi} and tak-
ing integral over the velocity space, one can get the continuity, mass and energy
conservations. In the derivations one should use the fact that the MDF vanishes as
V → ±∞. More precisely, we get

∂ρ

∂t
+
∂(ρUα)
∂xα

= 0, (2.27)

∂(ρUα)
∂t

+
∂(ρUαUβ)

∂xβ
+
∂παβ

xβ
= 0; α = 1, 2, 3 and (2.28)

∂E
∂t

+
∂(EUβ)
∂xβ

+
∂παβUβ

xα
+
∂qβ
∂xβ

= 0. (2.29)

Equations (2.27) to (2.29) represent balance laws when macroscopic quantities are
defined as moments of the distribution. Here, E is the total energy, i.e. E = cvT +

ρUiUi/2 where cv is the heat capacity in constant volume i.e. cv = 3kb/(2m) for
monatomic gas.

2.2.2 Navier-Stokes-Fourier System of Equations

Provided that the MDF is only slightly perturbed from the Maxwellian distribution,
it is useful to consider the expansion F = F (0) + eF (1) + ... where e = Kn. By
inserting the asymptotic expansion in the Boltzmann equation and keeping the first
order terms, the Navier-Stokes-Fourier (NSF) system is obtained. This procedure
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is called the Chapmann-Enskog expansion which provides closure equations for
pressure tensor and heat fluxes, see Chapman and Cowling, 1953.

The above-mentioned closures for the NSF limit then take the form

τi j = µ(
∂Ui

∂x j
+
∂U j

∂xi
) −

2µ
3
δαβ

∂Uγ

∂xγ
and (2.30)

qi = −κ
∂T
∂xi

. (2.31)

Here, κ represents the coefficient of heat conductivity.

2.3 Enskog Operator

Obviously as the number density or the molecular diameter increases, the underly-
ing dilute gas assumption breaks down and hence a more accurate S coll compared
to S Boltz should be adopted. Enskog has modified the Boltzmann equation in or-
der to deal with this so-called dense gas effect. First modification was including
the distance of colliding particles in their MDF. It becomes simply the molecular
diameter σ in case of the hard sphere model.

Next, the collision rate increases by the factor Y due to the correlation between the
collision pair. The idea is that volume occupied by the molecules becomes com-
parable with the whole volume of the gas. Therefore, there will be more collisions
compared to the dilute limit. Y equals to unity in case of rarefied gas and goes to
infinity when the particles becomes so close to each other that they cannot move
anymore. Note that Y is a function of density and increases with it. Assuming small
nb factor, Boltzmann and Clausius proposed the following expression for Y

Y = 1 + 0.625nb + 0.2869(nb)2 + 0.115(nb)3, (2.32)

where b = 2
3πσ

3 is called the HS second virial coefficient, see Chapman and Cowl-
ing, 1953. Based on the above-mentioned modifications Enskog proposed a modi-
fied collision operator including dense gas effects

S coll ≈ S Enskog =

∫
R3

∫ 2π

0

∫ +∞

0

[
Y(x +

1
2
σk̂)F (V∗, x)F (V∗1, x1 + σ k̂)

− Y(x −
1
2
σ k̂)F (V, x)F (V1, x1 − σ k̂)

]
gb̂db̂dε̂d3V.

(2.33)

Note that k̂ is the normal vector connecting centers of two colliding hard spheres,
k̂ = (x − x1)/||x − x1||2. For more details of the Enskog collision operator reader
is referred to Chapman and Cowling, 1953; Hirschfelder et al., 1963. By Taylor
expansion of Y(x + 1

2σk̂), F (V∗1, x1 + σ k̂) and F (V1, x1 − σ k̂) one can show that
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S Enskog = Y(x)S Boltz + S φ, (2.34)

where S φ stands for the collision contributions due to the molecular potential. S φ

is an infinite sum of integrals

S φ = J1 + J2 + J3 + J4 + J5 + J6 + ... . (2.35)

Following expressions can be found for J1 to J6

J1 =Y
∫

R3

∫ 2π

0

∫ +∞

0
(F ∗F ∗1 − FF1)gb̂db̂dε̂d3V, (2.36)

J2 =σY
∫

R3

∫ 2π

0

∫ +∞

0

(
ki(F ∗

∂F ∗1
∂xi

+ F
∂F1

∂xi
)
)
gb̂db̂dε̂d3V, (2.37)

J3 =
σ

2

∫
R3

∫ 2π

0

∫ +∞

0
(ki
∂Y
∂xi

)(F ∗F ∗1 − FF1)gb̂db̂dε̂d3V, (2.38)

J4 =
σ2

2
Y

∫
R3

∫ 2π

0

∫ +∞

0

(
kik j(F ∗

∂2F ∗1

∂xi∂x j
− F

∂2F1

∂xi∂x j
)
)
gb̂db̂dε̂d3V, (2.39)

J5 =
σ2

2

∫
R3

∫ 2π

0

∫ +∞

0
(ki
∂Y
∂xi

)
(
k j(F ∗

∂F ∗1
∂x j
− F

∂F1

∂x j
)
)
gb̂db̂dε̂d3V and (2.40)

J6 =
σ2

8

∫
R3

∫ 2π

0

∫ +∞

0
(kik j

∂2Y
∂xi∂x j

)(F ∗F ∗1 − FF1)gb̂db̂dε̂d3V. (2.41)

For details see Hirschfelder et al., 1963. Since S φ equals to zero in the homoge-
neous setup, similar to eqs. (2.25) and (2.26), one can show that the relaxation rates
of the shear stress and the heat fluxes are

∂πi j

∂t
= −Y

p
µ
πi j and (2.42)

∂qi

∂t
= −Y

2
3

p
µ

qi, (2.43)

respectively.

2.3.1 Collisional Transfer of Molecular Quantities

Taking moments of the Enskog equation may not lead to explicit expressions. By
transferring the physical coordinate to x − r with r being the contact point of col-
liding particles, total rate of collision transport of ψ(V) across dS per unit of time
and area becomes
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σY(r)
∫

R3

∫
R3

∫ 2π

0

∫ +∞

0
(ψ′ − ψ)F (V, r +

σ

2
k̂)F (V1, r1 +

σ

2
k̂)(k̂.n)gb̂db̂dε̂d3Vd3V1,

(2.44)

where n is normal of dS. Again, using Taylor expansion and ignoring derivatives
of second and higher orders, the collision part of the vector of flow of ψ can be
simplified to

1
2
σY(r)

∫
R3

∫
R3

∫ 2π

0

∫ +∞

0
(ψ′ − ψ)FF1 k̂gb̂db̂dε̂d3Vd3V1

+
1
4
σ2Y(r)

∫
R3

∫
R3

∫ 2π

0

∫ +∞

0
(ψ′ − ψ)FF1k̂ j.

∂

∂r j
(log(F /F1) k̂gb̂db̂dε̂d3Vd3V1,

(2.45)

see Hirschfelder et al., 1963. Chapman and Cowling, 1953 showed that for ψ ∈
{Vi,V jV j}, collisional transfers of momentum and energy lead to

πi j =
(
nkT (1 + nbY) − w

∂Uk

∂xk

)
δi j

+ ρ(1 + 2nbY/5)〈M′
〈iM

′
j〉〉 − (5w/6)

∂U〈i
∂x j〉

and (2.46)

qi =
1
2
ρ(1 + 3nbY/5)〈M′i M′jM

′
j〉 − cvw

∂T
∂xi

, (2.47)

where cv = 3k/(2m) and

w = (nb)2Y
√

mkbT/(π3/2σ2)

= 1.002µY(nb)2. (2.48)

Here µ is the HS viscosity in the dilute limit

µ = 1.016 × 5
√

mkbT/(16
√
πσ2). (2.49)

Using the Chapmann-Enskog expansion one can provide first and second approxi-
mations to 〈M′i M′j〉 and 〈M′i M′jM

′
j〉 as discussed in the following.

2.3.2 Chapman-Enskog Expansion of the Enksog Equation

Expressions (2.46) and (2.47) can be further simplified by using Chapman-Enskog
expansion for the unclosed terms 〈M′i M′j〉 and 〈M′i M′jM

′
j〉. Following the same

methodology as in the dilute gas case, i.e. F ≈ F (0) + KnF (1), the NSF closures of
the dense gas becomes (Chapman and Cowling, 1953)
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πi j =
(
nkT (1 + nbY) − w

∂Uk

∂xk

)
δi j −

(2µk

Y
(1 + 2nbY/5)2 + 5w/6

)∂U〈i
∂x j〉

, and

(2.50)

qi = −
( 1
Y

(1 + 3nbY/5)2κk + cvw
)∂T
∂xi

, (2.51)

with µk and κk the viscosity and the heat conductivity of dilute gas limit.
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Chapter 3

Review of Bird’s Algorithm

Since direct simulations based on the Boltzmann equation impose formidable chal-
lenges due to the high dimensionality of the phase space, several attempts have
been made in order to provide an alternative solution algorithm. In 60’s, Bird, 1963
proposed a Monte-Carlo algorithm in order to simulate rarefied gas flows consistent
with the Boltzmann equation. Direct Simulation Monte Carlo (DSMC) therefore
was introduced by Bird, 1994, where later it has been proven to be consistent with
the Boltzmann equation. The idea is to employ computational particles as dis-
cretization of the MDF. Same limitations which exist in the Boltzmann equation
are also implied in DSMC, i.e. dilute gas and molecular chaos. Therefore, DSMC
is not accurate once applied directly for simulating dense gases. Alexander et al.,
1995 provided a modification to DSMC such that dense effects could be captured.
Their so-called Consistent Boltzmann Algorithm (CBA) employs correction in the
position of the particles to mimic the dense gas effects. In this chapter, algorithms
of DSMC and CBA will be explained and their pros and cons will be discussed.

3.1 DSMC Algorithm

In DSMC, computational particles are employed whose positions and velocities
are updated in two steps: streaming and collision. The former is simply the direct
flight of particle. The latter involves selecting the collision candidates and conse-
quently performing collisions. Since collisions happen among nearby particles, a
discretization of the physical space is necessary as well. Therefore, particles only
interact inside each cell.

Let Λcoll be the number of candidate pairs for collision. Λcoll out of Nc, i.e. num-
ber of computational particles inside the cell c, are selected according to No Time
Counter (NTC) method, eq. (3.1). Λcoll is itself a function of upper bound value

Λmax = FN N2
Cπσ

2Mr,max∆t/Vc, (3.1)

where Mr,max is the magnitude of a maximum relative velocity of any pair within
the cell, Vc the volume of the cell and FN the number of physical particles that each
computational particle represents. Whether the picked pair actually collide or not
depends on the condition which for HS gas becomes

Mr/Mr,max > r, (3.2)
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1. Stream particles with their current velocity.
2. Apply boundary conditions.
3. Update velocity according to collisions.
4. Sample data.

Table 3.1: Outline of the DSMC algorithm for each time step.

with Mr the magnitude of the relative velocity of the selected pair and r is a random
number between zero and one with the uniform distribution.

Once eq. (3.2) is satisfied, the velocities of the selected pair are updated. Conserva-
tion of the linear momentum requires the the velocity of the center of mass remains
unchanged while energy conservation implies that the magnitude of the relative
velocity stays constant during the collision. Therefore, there is still freedom with
respect to directions to which particles scatter. According to the HS model, the rel-
ative velocity vector should scatter isotropically. Therefore, the following updates

Mpost
r = Mpost

r (cosθ, sinθcosφ, sinθsinφ)T , (3.3)

φ = 2πα1 and (3.4)

cosθ = 1 − 2α2, (3.5)

with α1 and α2 being uniform random numbers between zero and one, are adopted.
For more details on DSMC see Bird, 1994. Here, an outline of the DSMC algorithm
is given in table 3.1.

3.2 CBA Algorithm

As mentioned in the begining of this chapter, DSMC similar to the Boltzmann
operator assumes point particles instead of particles with a physical diameter. This
assumption is only valid when gas is dilute enough. To cope with that in dense
gases, Alexander et al., 1995 suggested a simple modification to DSMC such that
dense effects can be captured within the DSMC framework. Two modifications are
introduced in CBA accordingly. First, a position correction upon colliding particles
due to their diameter. Second, an extra collision due to the pair correlation function
Y (see eq. (2.32)).

Therefore, after each collisions the two colliding particles are transported with an
extra factor of ±d, where

d =
M∗r − Mr

||M∗r − Mr ||2
σ (3.6)

and ∗ denotes the post-collision value. Hence, one particle is streamed +d and
the other −d in addition to their normal streaming. Furthermore, the number of
collisions is modified such that,

ΛCBA
coll = YΛBoltz

coll . (3.7)
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1. Stream particles with their current velocities.
2. Apply boundary conditions.
3. Update velocity and position according to dense gas collisions.
4. Apply boundary conditions.
5. Sample data.

Table 3.2: Outline of the CBA algorithm for each time step.

An outline of the CBA algorithm is given in table 3.2. In comparison to DSMC,
step three is modified and step four is added. The reason is that in the velocity
update, i.e. step 3, positions are also updated. Thus, boundary conditions need to
be checked again after collisions. Alexander et al., 1995 showed that their approach
predicts transport coefficients of dense gases for a considerable density range. Yet,
once nσ > 0.4 CBA diverges from MD and Enskog’s solution.

The main drawback in the CBA algorithm is the fact that ΛCBA
coll becomes quite large

for dense gases. Since so many collisions have to be performed in each time step,
which increase quadratically with the number density, CBA is not employed often
in dense gas simulations. This is one of the motivations for expanding the Fokker-
Planck model for dense gases, since its complexity has no direct correlation with
the number density of the fluid.
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Chapter 4

Fokker-Planck Kinetics

In this chapter, a short review of the Fokker-Planck approximation of the Boltz-
mann collision operator will be given and the recent developments will be dis-
cussed. Please note that in this chapter still particles are assumed to be point parti-
cles with no diameter. In chapter 5, a more relative model for dense gases will be
proposed.

4.1 The Fokker-Planck Equation

The Fokker-Planck kinetic equation can be regarded as an approximation of the
Boltzmann equation in a sense that here we replace a jump process with a contin-
uous one. The idea is to describe the evolution of the MDF by two contributing
forces: drift and diffusion.

Suppose M denotes random variable from the velocity space V and X random
variable from x. For a process described by the following stochastic differential
equations (SDEs)

d p = Ãdt + λdW (4.1)

where W is a Wiener process,

p =


M1
M2
M3
X1
X2
X3

 , λ =


D11 D12 D13 0 0 0
D21 D22 D23 0 0 0
D31 D32 D33 0 0 0

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

 and Ã =


A1
A2
A3
M1
M2
M3

 , (4.2)

the Itô calculus provides us the equivalent Fokker-Planck equation

∂F

∂t
+
∂(FVi)
∂xi

= −
∂(F Ai)
∂Vi

+
1
2

∂2

∂Vi∂V j
(DikDk jF ), (4.3)

where i, j ∈ {1, 2, 3}. The coefficients Ai and Di j are called drift and diffusion coef-
ficients, respectively. For details of this link, reader is referred to Gardiner, 1996.
Let us call the right hand side of eq. (4.3) S FP. This operator, like any other op-
erator that approximates collision integral, naturally must satisfy conservations i.e.
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eq. (2.16) and the equilibrium conditions i.e. eqs. (2.17) and (2.18). In the first at-
tempt in literature, first a linear model for Ai and a scalar D were proposed (known
as linear FP) by Jenny et al., 2010. Also it was shown that their linear model pro-
vides a wrong value for the Prandtl number of monatomic gas in the hydrodynamic
limit. Then, Gorji et al., 2011 fixed this problem by providing a cubic model for
the drift. Since the cubic model with vanishing cubic term still provides a correct
Prandtl number, in this study for simplicity we focus on the quadratic version of
the cubic model. Note that once high Mach flows are considered, the cubic term
should be taken into account for stability reasons.

4.2 Linear Drift Model

Jenny et al., 2010 proposed a linear drift model for the Fokker-Planck description
of the Boltzmann operator which satisfies the conservation of mass, momentum
and energy besides H-theorem. This linear drift model can be constructed such that
the evolution of moments become consistent with the Boltzmann equation up to the
shear stresses. Therefore, the following closures were considered

Ai = −
1
τ

v′i , (4.4)

Di j =

√
2kT
τm

δi j and (4.5)

τ = 2µ/P. (4.6)

However, this closure gives rise to a wrong Prandtl number of 3/2, instead of its
correct value for the monatomic gas.

4.3 Quadratic Drift Model

Gorji et al., 2011 developed FP model of monatomic gas such that in the hydro-
dynamic limit the correct Prandtl number can be achieved. More accurately, for
non-equilibrium relaxation rates of the shear stress and heat fluxes the model must
provide specific rates, i.e. eq. (2.25) and eq. (2.26) respectively. Due to stability
reasons, they considered a cubic ansatz for the drift, even though a quadratic one
suffices to fix the correct Prandtl number. Therefore, in this study for simplicity we
consider the cubic model with the vanishing cubic term.

The idea is to provide closures for Ai and Dik such that same transport properties
corresponding to the Boltzmann equation are obtained. In other words, the mo-
ments of S FP must be equal to the moments of the Boltzmann collision integral.
As discussed in chapter 2, this constraint on FP will provide eventually similar
relaxation rates for the shear stress eq. (2.25) and the heat fluxes eq. (2.26). To
satisfy these constraints, it would be enough to consider a quadratic model for Ai

and a scalar for Di j, i.e.
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Ai = −
1
τ

v′i + ci jv′j + γi(v′jv
′
j −

3kT
m

), (4.7)

Di j =

√
2kT
τm

δi j and (4.8)

τ = 2µ/P. (4.9)

Similar to Gorji, 2014, one can show that it is sufficient to solve a system of nine
equations with ci j and γi being unknowns to fulfill relaxation rates of monatomic
gas which leads to a correct Prandtl number, i.e. Pr = 2/3;

cik〈M′kM′j〉 + c jk〈M′kM′i 〉

+ γi〈M′jM
′
kM′k〉 + γ j〈M′i M′kM′k〉 = 0 (4.10)

and

cik〈M′kM′jM
′
j〉 + 2c jk〈M′kM′jM

′
i 〉

+ γi
(
〈M′jM

′
jM
′
kM′k〉 − 〈M

′
jM
′
j〉〈M

′
kM′k〉

)
+ 2γ j

(
〈M′jM

′
i M′kM′k〉 − 〈M

′
jM
′
i 〉〈M

′
kM′k〉

)
=

5
3τ
〈M′i M′jM

′
j〉. (4.11)

Similar to DSMC, here we employ a particle Monte-Carlo scheme as samples of
SDEs eq. (4.1). Therefore, we use the numerical solution of eq. (4.1) similar to
what is suggested in Gorji and Jenny, 2014 with following explicit scheme

Mn+1
i = Ui + αcell

(
M′ni e−∆t/τ + cikM′nk + γi(M′nk M′nk − 3kT/m) +

√
2kT
τm

ξi
)
,

(4.12)

Xn+1
i = Xn

i + Mn
i ∆t (4.13)

where ξi is a normally distributed random variable and αcell makes sure that kinetic
energy in each cell is conserved

αcell =
〈M′nk M′nk 〉

〈M′n+1
k M′n+1

k 〉
. (4.14)

Please note that summations in eq. (4.14) are only over particles within the cell.
The outline of the quadratic Fokker-Planck model of ideal gas (IFP) is given in
table 4.1.

4.4 Noise reduction

Since in the resulting numerical approximation of eq. (4.12) we employ finite num-
ber of computational particles, the mean and variance of ξ may deviate from the
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1. Stream particles according to eq. (4.13).
2. Apply boundary conditions.
3. Calculate moments of velocity in each cell.
4. Calculate ci j and γi from eqs. (4.10) and (4.11).
5. Update velocity according to FP model eq. (4.12).
6. Sample data.

Table 4.1: Outline of the IFP algorithm for each time step.

exact values. Gorji and Jenny, 2014 suggested a modification to produce the em-
ployed random numbers such that we make sure the employed random numbers
have zero mean and unity variance. For np particles in a cell they proposed using
η

j
i instead of ξ j

i where j = 1, ..., np, i = 1, 2, 3 and

ξ̂
j
i = ξ

j
i −

∑np

j=1 ξ
j
i

np
, (4.15)

η
j
i =

∑np

j=1 ξ̂
j
i√

(
∑np

j=1 ξ̂
j
i ξ̂

j
i )/np

. (4.16)

Note that similar modification of random numbers was employed in this study.
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Chapter 5

A Fokker-Planck Model for
Dense Gases

In this chapter we devise a novel Fokker-Planck model for description of dense
gases consistent with the Enskog equation. First, new terms that capture dense gas
corrections to the pressure tensor and the heat fluxes will be introduced. Then, a
numerical scheme for practical simulation of dense gases will be proposed.

Before proceeding to the rigorous derivation of the dense FP model, let us provide
a rough idea with regards to the contribution of dense gas effects in the model.
Motivated by the position correction scheme discussed in CBA § 3.2, we consider

dXi = (Mi + Âi)dt, (5.1)

where Â would be the correction to the dilute molecular velocity M. So, the ques-
tion becomes how we fix Â to represent what CBA or more accurately, the Enskog
equation provides? This thesis is about introducing a consistent Â. Having the
velocity evolution similar to IFP

dMi = Aidt + DdWk (5.2)

and using Itô’s lemma, one can show that evolution of the MDF becomes

∂F

∂t
+
∂(FVi)
∂xi

= −
∂(F Ai)
∂Vi

−
∂(F Âi)
∂xi

+
1
2

∂2

∂Vi∂V j
(D2F ). (5.3)

The drift Ai and the diffusion D coefficients are also affected by the dense effects.
In the following sections, first necessary modifications to these coefficients are de-
scribed. Then, we propose a model for Âi in the position update.

5.1 Correction in Velocity Evolution

As discussed in § 4.1, drift and diffusion coefficients are calculated by satisfying
relaxation rates of the shear stress and the heat fluxes. Since these rates differ
slightly for the Enskog equation from the Boltzmann operator, Ai and D must be
corrected such that eqs. (2.42) and (2.43) are satisfied instead. Our approach is
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similar to what has been done by Gorji, 2014 with the exception that moments of
Boltzmann are also multiplied by Enskog’s factor Y . One can show that, similar to
IFP, relaxation rates of quadratic model in a homogeneous setup are

∂πi j

∂t
= ρ〈AiM′j + A jM′i + D2δi j〉 and (5.4)

∂qi

∂t
=

1
2
ρ〈AiM′jM

′
j + 2A jM′jM

′
i 〉. (5.5)

By matching eqs. (2.42) and (2.43) with eqs. (5.4) and (5.5), one can show that final
expressions for Ai and D are exactly the expressions for IFP eqs. (4.10) and (4.11)
with the only difference in the time scale τ. Substituting τ = τk/Y we get

cik〈M′kM′j〉 + c jk〈M′kM′i 〉

+ γi〈M′jM
′
kM′k〉 + γ j〈M′i M′kM′k〉 = 0, (5.6)

cik〈M′kM′jM
′
j〉 + 2c jk〈M′kM′jM

′
i 〉

+ γi
(
〈M′jM

′
jM
′
kM′k〉 − 〈M

′
jM
′
j〉〈M

′
kM′k〉

)
+ 2γ j

(
〈M′jM

′
i M′kM′k〉 − 〈M

′
jM
′
i 〉〈M

′
kM′k〉

)
=

5Y
3τk 〈M

′
i M′jM

′
j〉 (5.7)

and

τk =
2µk

P
. (5.8)

Thus in each cell, the velocity of a particle evolves satisfying the relaxation rate
conditions, i.e. eqs. (2.42) and (2.43), such that Prandtl number of 2/3 for the
dilute monatomic gas limit can be obtained.

5.2 Correction in Position Evolution

As discussed in the beginning of this chapter, CBA gave us the suggestion that an
extra advection is needed due to dense effects. Consequently, Âi was introduced to
capture that effect. In this section, first the ansatz for Âi is given to obtain the total
pressure and then it will be modified to obtain the correct heat conduction as well.

5.2.1 Total Pressure Tensor

In this section it will be shown that in order to get the correct pressure tensor,
consistent with the Enskog equation i.e. eq. (2.46), Âi can be set to

Âi = αi jv′j. (5.9)
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First, let us make sure that the continuity is not touched. By integrating eq. (5.3)
over the velocity space and using the fact that MDF and its derivative approach zero
at the boundaries, we get

∂ρ

∂t
+
∂(ρUi)
∂xi

= −
∂

∂xi

(
ραi j〈M′j〉

)
. (5.10)

Note that by definition 〈M′j〉 = 0 and thus the right hand side of eq. (5.10) equals
zero. In order to get to the momentum equation, we need to take the first velocity
moment of eq. (5.3), meaning multiply both sides by Vk and take integral over the
velocity space, i.e.

∂(ρUk)
∂t

+
∂(ρ〈MiMk〉)

∂xi
= −

∂

∂xi
(ρ〈ÂiMk〉). (5.11)

By decomposing the velocity to its mean and fluctuation V = V′ + U, it follows

∂(ρUk)
∂t

+
∂(ρUiUk)

∂xi
+
∂(ρ〈M′i M′k〉)

∂xi
+

∂

∂xi
(ρ〈ÂiMk〉) = 0, (5.12)

where pk
ik = ρ〈M′i M′k〉 is the kinetic pressure tensor. From definition of the pressure

tensor in the kinetic theory we know that its trace would give us the equilibrium
pressure and its deviatoric part gives the shear stress, i.e. eq. (2.10). However the
pressure tensor of the dense gas is more complicated. As mentioned in § 2.3.1, the
pressure tensor includes corrections due to the bulk viscosity, i.e. eq. (2.46). This
means that we would need to incorporate for that in both trace and deviatoric part.
Yet for simplicity, we assume that terms in O(ε2) where ε = nb are negligible. By
this assumption the terms including the divergence of the velocity drop out and the
pressure tensor approximation arising from the Enskog equation becomes

πi j = nkT (1 + nbY)δi j + ρ(1 + 2nbY/5)〈M′
〈iM

′
j〉〉. (5.13)

Now as desired, the trace of πi j gives us the equilibrium pressure and the deviatoric
part gives the shear stress. Let us define the total equilibrium pressure and the total
viscosity as following

ptotal/pk = 1 + nbY and (5.14)

µtotal/µk = 1 + 2nbY/5. (5.15)

Again, pk is the equilibrium pressure of the ideal gas, i.e. pk = nkT . Thus it follows

ptotal
ik =

µtotal

µk 〈M
′
〈iM

′
k〉〉 +

ptotal

pk 〈M
′
jM
′
j〉δik/3. (5.16)
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Therefore, the total pressure tensor of eq. (5.12) should be equal to

〈M′i M′k〉 + 〈ÂiMk〉 =
µtotal

µk 〈M
′
〈iM

′
k〉〉 +

ptotal

pk 〈M
′
jM
′
j〉δik/3. (5.17)

Substituting our initial model for Âi eq. (5.9), one can show that the tensor coeffi-
cients αi j must satisfy

αi j〈M′jM
′
k〉 = (

µtotal

µk − 1)〈M′
〈iM

′
k〉〉 + (

ptotal

pk − 1)〈M′jM
′
j〉δik/3. (5.18)

Up to this point the pressure tensor is corrected with the initial ansatz, eq. (5.9). By
calculating αi j coefficients such that eq. (5.18) is satisfied, one can obtain the total
pressure tensor including dense effects. In the following section another term will
be added to this model in order to obtain the total heat fluxes consistent with the
Enskog equation.

5.2.2 Correcting Heat Fluxes

Taking the second velocity moment of eq. (5.3) and using our first ansatz for Âi,
eq. (5.9), one can easily note that we end up with more equations than the number
of unknowns. To fix this, our ansatz for Âi is modified by adding another term, i.e.

Âi = αi jv′j + βi(v′jv
′
j − 3kT/m). (5.19)

In this study, we refer to this model as Quadratic Fokker Planck for Dense gases (Q-
DFP). Similar to what we did for the momentum, first we show that the continuity
is satisfied. Then, similar to what was done in § 5.2.1, an expression for αi j and βi

can be derived to obtain the total pressure tensor including dense effects. Having
done these, we take the second moment of eq. (5.3) and will obtain three more
constraints on the unknown coefficients. The zeroth velocity moment of eq. (5.3)
gives conservation of mass as expected

∂ρ

∂t
+
∂(ρUi)
∂xi

= −
∂

∂xi

(
ραi j〈M′j〉

)
−

∂

∂xi

(
βi(〈M′jM

′
j〉 − 3kT/m)

)
= 0. (5.20)

For the momentum equation, it is enough to substitute the modified ansatz for Âi,
eq. (5.19), in eq. (5.17)

αi j〈M′jM
′
k〉 + βi〈M′jM

′
jM
′
k〉 =

(µtotal

µk − 1
)
〈M′
〈iM

′
k〉〉 +

( ptotal

pk − 1
)
〈M′jM

′
j〉δik/3.

(5.21)

Note that similar to what has been done in § 5.2.1, again we ignored O(ε2) with ε =

nb. Therefore, µtotal and ptotal are the expressions given in eqs. (5.14) and (5.15).
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By taking the second velocity moment ψ = VkVk/2 of eq. (5.3), we can obtain the
conservation of energy

1
2
∂

∂t
(ρ〈MkMk〉) +

1
2
∂

∂xi
(ρ〈MiMkMk〉) = −

1
2
∂

∂xi
(ρ〈ÂiMkMk〉). (5.22)

Note the following expansions

〈MkMk〉 = 〈(M′k + Uk)(M′k + Uk)〉 = 〈M′kM′k〉 + UkUk

=
3kT
m

+ UkUk (5.23)

and

〈MiMkMk〉 = 〈(M′i + Ui)(M′k + Uk)(M′k + Uk)〉

= 〈(M′i + Ui)(M′kM′k + 2M′kUk + UkUk)〉

= 〈M′i M′kM′k + 2M′i M′kUk + M′i UkUk + UiM′kM′k + 2UiM′kUk + UiUkUk)〉

= 〈M′i M′kM′k〉 + 2〈M′i M′k〉Uk + Ui〈M′kM′k〉 + UiUkUk, (5.24)

are employed. Substituting these expansions back into eq. (5.22) one can show

∂

∂t
(

3k
2m

T +
1
2
ρUkUk) +

∂

∂xi

(ρ
2
〈M′i M′kM′k〉 + ρ〈M′i M′k〉Uk +

3kT
2m

Ui +
1
2
ρUiUkUk

)
= −

1
2
∂

∂xi

(
ρ〈ÂiMkMk〉

)
. (5.25)

As explained in chapter 2, the heat capacity at constant volume of a monatomic gas
is cv = 3k/(2m). Also, the total energy of gas is defined as E = cvT + ρUiUi/2
where by using eq. (2.7) and eq. (2.12) we get

∂E
∂t

+
∂

∂xi
(qi + πikUk + UiE) = −

1
2
∂

∂xi
(ρ〈ÂiMkMk〉). (5.26)

Let us substitute our quadratic model eq. (5.19) in the last term of eq. (5.26)

〈ÂiMkMk〉 = αi j〈M′jMkMk〉 + βi
(
〈M′jM

′
jMkMk〉 −

3kT
m
〈MkMk〉

)
. (5.27)

Furthermore, by employing following expansions

〈M′jMkMk〉 = 〈M′j(M′kM′k + 2M′kUk + UkUk)〉

= 〈M′jM
′
kM′k〉 + 2Uk〈M′jM

′
k〉

= 2q j/ρ + 2Ukπk j/ρ (5.28)
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and

〈M′jM
′
jMkMk〉 = 〈M′jM

′
j(M′kM′k + 2M′kUk + UkUk)〉

= 〈M′jM
′
jM
′
kM′k〉 + 2Uk〈M′jM

′
jM
′
k〉 + UkUk〈M′jM

′
j〉

= 〈M′jM
′
jM
′
kM′k〉 + 4Ukqk/ρ + UkUk

3kT
m

, (5.29)

we get

∂E
∂t

+
∂

∂xi
(qi + πikUk + UiE) +

∂

∂xi

(
αi jq j + αi jUkπk j + βi

ρ

2
〈M′jM

′
jM
′
kM′k〉

+ 2βiUkqk + βi
ρ

2
3kT
m

UkUk −
ρβi

2

(3kT
m

)2

− βi
ρ

2
3kT
m

UkUk

)
= 0. (5.30)

Considering the relation found from the momentum equation eq. (5.21), we get

∂E
∂t

+
∂

∂xi
[Uk(

µtotal

µk π〈ik〉 +
ptotal

pk π j jδik/3)] +
∂

∂xi
(UiE)

+
∂

∂xi

(
qi + αi jq j + βi

ρ

2
〈M′jM

′
jM
′
kM′k〉 −

ρβi

2

(3kT
m

)2
)

= 0. (5.31)

Here is the place to set the heat fluxes to what we want it to become. As mentioned
in § 5.2.1, we ignore O(ε2) with ε = nb. This assumption also simplifies the total
heat flux eq. (2.47) and thus we get

qi = (1 + 3nbY/5)〈M′i M′jM
′
j〉. (5.32)

This implies the total heat conductivity κtotal

κtotal/κk = 1 + 3nbY/5 (5.33)

including dense effects. Therefore, we want the heat fluxes of eq. (5.31) satisfy

qi + αi jq j + βi
ρ

2
〈M′jM

′
jM
′
kM′k〉 −

ρβi

2

(3kT
m

)2
=
κtotal

κk qi. (5.34)

Taking qi to the right hand side we get

αi jq j + βi
ρ

2
〈M′jM

′
jM
′
kM′k〉 −

ρβi

2

(3kT
m

)2
= (

κtotal

κk − 1)qi, (5.35)

or
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αi j〈M′jM
′
kM′k〉 + βi〈M′jM

′
jM
′
kM′k〉 − βi

(3kT
m

)2
= (

κtotal

κk − 1)〈M′i M′kM′k〉. (5.36)

Thus, eq. (5.36) gives another constraint on our model to make sure that the total
heat fluxes can be achieved by using the quadratic model, i.e. eq. (5.19), for the
Fokker-Planck description of dense gases.

5.2.3 Summary of the Proposed Model

As discussed in previous sections, the effects of molecular diameter can be included
in the position evolution of particles. As it has been justified, the Q-DFP ansatz

Âi = αi jv′j + βi(v′jv
′
j − 3kT/m) (5.37)

leads to correct viscosity and heat conductivity based on the Enskog equation; as
long as O((nb)k) terms with k > 1 are neglected. Furthermore, we will refer to
the case of β = 0 as the Linear Dense FP model (L-DFP). Note that L-DFP only
accounts for correct viscosities while Q-DFP provides a more complete model by
giving correct heat conductivities as well.

Putting everything together and using Ito’s lemma, we get the following set of SDEs

dMi =
(
−

Y
τ

M′i + ci jM′j + γi(M′jM
′
j −

3kT
m

)
)
dt +

√
2kTY
τm

dWk and (5.38)

dXi = Midt +
(
αi jM′j + βi(M′jM

′
j − 3kT/m)

)
dt. (5.39)

The coefficients ci j and γi are calculated based on the relaxation rates with expres-
sions given in eqs. (5.6) and (5.7), as explained in § 5.1. Effects of the diameter
are captured by αi j and βi from eqs. (5.21) and (5.36) which forms a system of 12
equations for each cell.

5.3 Numerical Scheme

Since the velocity update is quite similar to the IFP model, the only change is due
to the time scale τtotal according to eq. (5.8). Hence, we only need to add the extra
advection to the position update resulting in

Mn+1
i = Un

i + αcell
(
M′ni e−∆tY/τ + cikM′nk + γi(M′nk M′nk − 3kT/m) +

√
2kTY
τm

ξi
)

(5.40)

and

Xn+1
i = Xn

i + Mn
i ∆t +

(
αi jM′nj + γi(M′nj M′nj − 3kT/m)

)
∆t. (5.41)
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1. Calculate moments of the velocity in each cell.
2. Calculate αi j and βi from eqs. (5.6) and (5.7).
3. Stream particles using eq. (5.41).
4. Apply boundary conditions.
5. Calculate moments of the velocity in each cell.
6. Calculate ci j and γi from eqs. (4.10) and (4.11).
7. Update the velocity according to FP model eq. (5.40).
8. Sample data.

Table 5.1: Outline of Q-DFP for dense gases at each time step.

In eq. (5.41), we assumed that the velocity does not change in ∆t which is a sim-
plification to avoid the complexity with regards to the integration. One might try
to get an exact position update from the velocity profile by taking integral over the
time step

Xn+1
i = Xn

i +

∫ t+∆t

t

(
Mi + αi jM′j + γi(M′jM

′
j − 3kT/m)

)
dt. (5.42)

Nevertheless, in this study we stick to eq. (5.41) and admit the integration error. An
outline of the Q-DFP model of dense gas flows is given in table 5.1.
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Chapter 6

Simulation Studies

In this chapter, the simulation results of several simple test cases are reported.
These examples are meant to show the accuracy of Q-DFP model. For compar-
ison, results from DSMC, CBA and IFP model are also calculated. Since directly
solving the Enskog equation is quite challenging and expensive, comparisons were
made with respect to the CBA results for the transport coefficients at moderate den-
sities, i.e. nσ3 < 0.4. CBA is used since according to Alexander et al., 1995 it
predicts relatively similar results compared with the Enskog and MD solutions.

Argon with properties mentioned in table 6.1 is used for all the simulations. The
molecular values are taken from Bird, 1994. µ is the viscosity of dilute Argon and
ω is the exponent factor in scaling viscosity with respect to the temperature i.e.
µ/µ0 = (T/T0)ω. Note that ω = 1/2 for HS molecular model. σ indicates diameter
and m is molecular mass.

µ [kg.m−1.s−1] ω [−] σ [m] m [kg] κ [W.m−1.K−1]
2.117 × 10−5 0.5 3.628 × 10−10 6.633 × 10−26 0.01625

Table 6.1: Properties of Argon.

Iso-thermal walls are considered in all the simulations, i.e. the temperature of sur-
face is kept constant at Tw. The boundary conditions are set such that velocity
represents the equilibrium state for such a temperature. For instance, velocity of
particles hitting a wall with normal in x2 direction and driven with velocity Uw in
x1 direction are as the following

M1 =

√
kbTw

m
N(0, 1) ± Uw, (6.1)

M2 = ±

√
2kbTw

m

√
−ln

(
R(0, 1)

)
, (6.2)

M3 =

√
kbTw

m
N(0, 1), (6.3)

where N(0, 1) is a normal random number with zero mean and standard deviation
of one. R(0, 1) stands for a random number with the uniform distribution between
zero and one. Position of particles hitting the walls are updated using the new
velocity and the remainder portion of the time step. For details on thermal walls,
reader is referred to Bird, 1994. Also, note that in all of the simulations, except for
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Table 6.2: Performance and memory of Intel(R) Xeon(R) CPU
X7542.

Max Turbo Frequency 2.8 GHz
L2 cache 256 K
L3 cache 18 MB

performance reports, dimensions are picked such that Knudsen number Kn = 0.01
is obtained.

In all simulations of CBA and DSMC, small enough time step is chosen

∆t = 0.01
min(λ, L/nc)
max(Uw,Uth)

, (6.4)

where Uth is the thermal velocity of the wall i.e. Uth =
√

kTw/m and λ the mean
free path. Here, nc indicates the number of cells in each direction. In case of the
Fokker-Planck based simulations, CFL condition as suggested by Gorji and Jenny,
2015 is used for determining the time step size, i.e.

∆t ≤
1
2

L/nc

max(Uw,Uth)
. (6.5)

In all the simulation studies, the box geometry is adopted. Walls are kept at the
constant temperature while they can move by a given velocity Uw. Figure 6.1
shows the corresponding schematic.

x1
x2

x3

Uw2 ,Tw2

Tw3

Uw1 ,Tw1

Tw4 L

Figure 6.1: Schematic of the simulation setup.

In all simulations, single core with one thread of Intel(R) Xeon(R) CPU X7542
with specification given in table 6.2 was utilized for the computations.

6.1 Equilibrium Box

In order to check whether the proposed DFP give us the equilibrium pressure con-
sistent with the Enskog solution, equilibrium conditions are imposed on the gas.
Particles are uniformly distribution in a box where velocities are set based on the
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Maxwellian distribution. The iso-thermal stationary walls at Tw = 273 K are con-
sidered. Therefore, the gas is at rest with no external force or a temperature gra-
dient. Thus, the macroscopic quantities of the gas do not change in time and the
MDF remains Maxwellian.

The pressure is calculated based on its fundamental definition i.e. force per area
that wall experience from the gas particles. This force is nothing but the rate of
change of the momentum of these particles. Therefore, the pressure is calculated
from

P =
1

At f

( t f∑
t=0

Nc∑
j=1

∆(mM j)
)
. (6.6)

Here A is the total area of faces of the box. In case of a cubic box it will be A = 6L2.
t f is the final time when sampling terminates. Nc indicates the number of particles
that hit the wall during each time step.

104 particles are employed in a cell which is left at rest. Figure 6.2 indicates ac-
curacy of the proposed dense FP models compared to CBA, DSMC and IFP. It is
interesting to see that Q-DFP and L-DFP models give better agreement compared
to CBA, where the latter over-predicts the value nkbT (1 + nbY).
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Figure 6.2: Equilibrium pressure of gas at Kn = 0.01 obtained
from L-DFP, Q-DFP, IFP, DSMC and CBA. Solid black line indi-

cates P = nkbT (1 + nbY) and dashed line is P = nkbT .

As discussed in § 3.2, CBA becomes extremely costly as the gas becomes denser.
Achieving a better performance was one of the main motivations behind develop-
ing a dense FP model. As a rough cost comparison, a box at Kn = 0.01 and a
gas at nb = 0.1 are chosen while the density is increased without changing the
dimensions. The cost of proposed FP models have no correlation with the density
of the gas, as expected. However, CBA becomes expensive as the gas becomes
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denser. Like DSMC, the number of collision candidates in CBA is a function of the
density, i.e. quadratic correlation. One can see the mentioned reasoning clearly in
Figure 6.3. Note that the CPU times include both streaming and velocity update.
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Figure 6.3: Execution time of Q-DFP and CBA for same amount
of simulation time.

6.2 Couette Flow

In order to assess the shear viscosity of the gas, the planar Couette flow is consid-
ered here. The idea is that by moving walls in opposite directions, a gradient of
the bulk velocity can be obtained such that the viscosity can be calculated from its
relation with the shear stress. Here, relations obtained from the Chapman-Enskog
expansion come to our help in measuring viscosity at low Knudsen flow. As ex-
plained in §§ 2.2.2 and 2.3.2, one can relate the pressure tensor and the heat fluxes
to the gradients of the bulk velocity and the temperature, i.e. eqs. (2.30), (2.31),
(2.50) and (2.51).

Let the walls of a box be large enough in x1 and x3 dimensions. Thus, one can
assume that the gas behavior is one dimensional in x2 dimension. By moving walls
with normal in x2 by Uw = (±300, 0, 0)T [m/s] in opposite directions, the desired
shear stress can be produced. Ignoring derivatives with respect to x1 and x3, and
knowing that divergence of the bulk velocity is very small, ∂Uk/∂xk → 0, one can
show that the pressure tensor for ideal and dense gases are

pideal
12 = −µk ∂U1

∂x2
and (6.7)

pdense
12 = −

(µk

Y
(1 + 2nbY/5)2

)∂U1

∂x2
, (6.8)
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respectively. The dilute gas regime should give us µideal = µk while the dense one
gives µdense = µk(1 + 2nbY/5)2/Y . Gradient of the bulk velocity was calculated
using a simple second order central difference discretization upon the averaged
velocity of each cell. Furthermore, sampling the pressure tensor can be obtained
according to

p12 = ρ〈M′1M′2〉 = ρ〈(M1 − U1)(M2 − U2)〉

= ρ
(
〈M1M2〉 − U1U2

)
. (6.9)

Therefore, we can do time averaging in order to estimate U1, U2 and 〈M1M2〉. Also,
note that the viscosity scales with the temperature. Therefore, in order to compare
the calculated viscosities at the reference temperature Tre f = 273 K, µ(T ) has to be
scaled back to the reference value.

Convergence studies on the spatial refinement lead us to 200 computational cells
in x2. Besides, 1000 particle per cell were employed. Dimensions are set to reach
Kn = 0.01 and nb = 0.4.

Figure 6.4 depicts the scaled viscosity back into the reference temperature. For
the reference, exact values are also plotted, i.e. µideal

re f = 2.117 × 10−5kg m−1s−1

as in black dashed line and µdense
re f = µideal

re f (1 + 2nbY/5)2/Y as black solid line. As
expected, IFP and DSMC predict µideal

re f with a decent accuracy. However, similar
to what Alexander et al., 1995 have reported, CBA over predicts viscosity µdense

re f .
The proposed L-DFP and Q-DFP both provide a good agreement against the exact
values.
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Figure 6.4: Calculated viscosity from the Couette flow simula-
tions with Kn = 0.01 and nb = 0.4 using Q-DFP, IFP, DSMC
and CBA. Solid line indicates µdense

re f = µideal
re f (1 + 2nbY/5)2/Y and

dashed line µideal
re f .

The shear stress and the velocity profile of the Couette flow simulations are shown
in Figure 6.5. Velocities are almost identical while one can see differences in the
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Figure 6.5: The shear stress and velocity profiles of the Couette
flow obtained from Q-DFP, IFP, DSMC and CBA where Kn =

0.01 and nb = 0.4.

shear stress. It is not a surprise that CBA gives a higher shear stress than our
proposed dense FP models.

6.3 Fourier Flow

In this section, the heat conduction will be evaluated in the dense regime. As ex-
plained in § 5.2.2, the quadratic model is proposed to impose the dense effect on
the heat conduction of gas. Here, by imposing a temperature gradient in our box,
we can easily get the thermal conductivity of the gas from Fourier’s law. The setup
is similar to the one of the Couette flow § 6.2, except for boundary conditions.
Similar to the Couette case, one can again expect to see an one dimensional flow
profile which is driven due to the temperature difference of the walls. Fourier’s law
together with the Chapman-Enskog heat conductivity values give us

qideal
2 = −κk ∂T

∂x2
and

qdense
2 = −

(κk

Y
(1 + 3nbY/5)2

) ∂T
∂x2

, (6.10)

for dilute and dense gas, respectively. Therefore, the heat conductivity of dense gas
reads κdense = κk(1 + 3nbY/5)2/Y . One can evaluate this transport coefficient by
calculating the heat flux q2 and the temperature gradient ∂T/∂x2 from simulations.
The temperature gradient is calculated using a central finite difference on the time
averaged temperature profile. The heat fluxes are calculated based on

q2 = ρ〈M′2M′jM
′
j〉 = ρ〈(M2 − U2)(M j − U j)(M j − U j)〉

= ρ
(
〈M2M jM j〉 − 2〈M2M j〉U j − 〈M jM j〉U2 + 2〈M j〉U jU2

)
. (6.11)
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The temperature gradient is imposed by setting Tw1 = 300 K and Tw2 = 900 K.
Here we set the density such that nb = 0.1 and based on Kn = 0.01 the distance
between the two walls is found. After convergence studies, we observed that 500
cells give a fine accuracy for capturing the temperature gradient. Also, note that
1000 particles per cell was employed in all the simulations.

Figure 6.6 shows the thermal conductivity calculated from the Fourier flow. The
solid lines indicates exact values scaled to the number density and the temperature
of dense gas, while the dashed lines account for the ideal gas. Thus, the following
scalings are adopted

κideal(T )/κ(Tre f ) = (T/Tre f )ω and (6.12)

κdense(T )/κ(Tre f ) = (T/Tre f )ω(1 + 3nbY/5)2/Y. (6.13)

As shown in Figure 6.6, as expected the IFP model gives the reference heat conduc-
tivity of the dilute gas. For such a moderate dense gas, as expected, CBA predicts
the thermal conductivity close to the benchmark. Q-DFP also predicts κdense with a
good accuracy. This validates our model for the heat conduction correction accord-
ing to the Enskog equation.
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Figure 6.6: Heat conductivity calculated from Fourier flow with
Kn = 0.01 and nb = 0.1 using proposed Q-DFP, IFP and CBA.

Moreover, the bulk temperature and the heat flux are plotted along x2. Indeed
both temperature and heat flux are very similar for CBA and Q-DFP. Note that this
similarity is only the case for very moderate dense gases. As nb increases, again
CBA ends up over-predicting heat flux and its heat conductivity diverges from DFP
and the exact heat conductivity obtained from the Enskog equation.
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Figure 6.7: Temperature, heat flux and nb profiles of Fourier flow
with Kn = 0.01 and initial nb = 0.1 calculated using Q-DFP, IFP

and CBA.
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Chapter 7

Conclusion and Outlooks

In this study, a Fokker-Planck description suitable for dense monatomic gas flows
was developed. In comparison to the original model of Jenny et al., 2010; Gorji
and Jenny, 2014, a drift-like term in evolution of the position is introduced. First
a linear model for this velocity correction was proposed in order to incorporate the
dense effects in the pressure tensor. To obtain correct heat fluxes a quadratic model
was then added to the introduced term. Several examples were simulated such that
accuracy of derivation could be evaluated. The equilibrium pressure was obtained
by simulating a gas in an insulated box. Correction to the shear stress for both
linear and quadratic models were tested by simulating the Couette flow. Then, the
modified heat conductivity was measured by simulating the Fourier problem. By
these examples, we can conclude that the derivation given in chapter 5 is consis-
tent with the Enskog expansions in the give range of nb. Also, it was shown that
numerical complexity of the Fokker-Planck model of dense gases, unlike CBA, has
no correlation with the density.

There are several improvements that can be considered for future studies. A more
accurate position update, i.e. eq. (5.42), could be implemented instead of a simple
Euler method used here. Also, here we have used a quadratic model for the kinetic
part, i.e. velocity update, which is sufficient for obtaining correct Prandtl number.
However, for stability reasons, it is suggested to use a cubic model as explained by
Gorji et al., 2011.

One of the assumptions that we made was ignoring terms in the order or higher than
(ε2) in the total pressure tensor and the heat fluxes, i.e. ε = nb. This helped us with
extracting the equilibrium pressure from the trace of pressure tensor and setting it
to its corresponding equation of state for dense gases, i.e. eqs. (5.14) and (5.17).
This implied ignoring the dense effects on the bulk viscosity of the gas. For future
studies, it might be possible to include the bulk viscosity modification by adding a
diffusive term in velocity update of the proposed dense Fokker-Planck model.

Moreover, in this study we considered only Hard Sphere (HS) as molecular model.
Basically, the Enskog equation is designed for HS. Therefore, for more dense gases
or liquids, it is worth mentioning the need for more accurate collision operators
such that complicated potentials, e.g. the Lennard-Jones potential, could be mod-
eled in the kinetic theory. That way, the kinetic theory can be further extended for
accurate predictions of liquid flows as well.
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