Mathe V (CES) / PDEs

Partial Differential Equations (CES+SISC), WS 2022/23

Timings and Locations
  • Lecture 1: Monday, 08:30 - 10:00 from 10.10.2022 to 30.01.2023 in CARL H07.
  • Lecture 2: Monday, 14:30 - 16:00 from 10.10.2022 to 30.01.2023 in CARL H04.
  • Global Exercise Class: Wednesday, 12:30 - 14:00 from 12.10.2022 to 01.02.2023 in CARL H05.
  • Tutorial: Friday, 14:30 - 16:00 from 14.10.2020 to 03.02.2022 in CARL S16.


Will be announced.

Further Information

Probably we will move the global exercise to Monday 14:30 and, in exchange, move the second lecture to Wednesday, 12:30.
All important course information can be found on the Moodle page of the course (see Moodle Learning Space).
Please register for the course to get access to Moodle. If you are not able to register for the course, please contact Prof. Julia Kowalski via email.

  • D. Braess: Finite Elemente, Springer, Berlin, 1992
  • L. C. Evans: Partial Differential Equations, AMS, 2010
  • Ch. Großmann, H.G. Roos: Numerik partieller Differentialgleichungen, Teubner, Stuttgart, 1994
  • W. Hackbusch: Theorie und Numerik elliptischer Differentialgleichungen, Teubner, Stuttgart, 1986
  • R. Leveque: Finite Difference Methods for Differential Equations, Teubner, Stuttgart, 1986
  • R. Leveque: Theory and Numerics for Hyperbolic Conservation Laws, Teubner, Stuttgart, 1986
  • R. Leveque: Numerical Methods for Conservation Laws, Birkhäuser, Basel, 1992
  • E. Godlewski, P.-A. Raviart: Numerical Approximation of Hyperbolic Systems of Conservation Laws, Springer, New York, 1996
  • P. Knabner, L. Angermann: Numerik partieller Differentialgleichungen, Springer, Berlin-Heidelberg-New York, 2000

back to teaching page

RWTH Home EDDy Research Training Group International Research Training Group MIP SIAM Student Chapter
Last modified:: 2022/09/23 10:55