Mathe V (CES) / PDEs
Partial Differential Equations (CES+SISC), WS 2022/23
Timings and Locations
Lecture 1: Monday, 08:30 - 10:00 from 10.10.2022 to 30.01.2023 in CARL H07.
Lecture 2: Wednesday, 12:30 - 14:00 from 12.10.2022 to 01.02.2023 in CARL H05.
Global exercise: Monday, 14:30 - 16:00 from 10.10.2022 to 30.01.2023 in CARL H04.
Tutorial: Friday, 14:30 - 16:00 from 14.10.2020 to 03.02.2022 in CARL S16.
Exam
All important course information can be found on the Moodle page of the course (see Moodle Learning Space).
Please register for the course to get access to Moodle. If you are not able to register for the course, please contact Prof. Julia Kowalski via email.
Literature
D. Braess: Finite Elemente, Springer, Berlin, 1992
L. C. Evans: Partial Differential Equations, AMS, 2010
Ch. Großmann, H.G. Roos: Numerik partieller Differentialgleichungen, Teubner, Stuttgart, 1994
W. Hackbusch: Theorie und Numerik elliptischer Differentialgleichungen, Teubner, Stuttgart, 1986
R. Leveque: Finite Difference Methods for Differential Equations, Teubner, Stuttgart, 1986
R. Leveque: Theory and Numerics for Hyperbolic Conservation Laws, Teubner, Stuttgart, 1986
R. Leveque: Numerical Methods for Conservation Laws, Birkhäuser, Basel, 1992
E. Godlewski, P.-A. Raviart: Numerical Approximation of Hyperbolic Systems of Conservation Laws, Springer, New York, 1996
P. Knabner, L. Angermann: Numerik partieller Differentialgleichungen, Springer, Berlin-Heidelberg-New York, 2000
back to teaching page