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1 Introduction

This seminar work concerns the development of a second-order accurate numerical
scheme for two-dimensional hyperbolic partial-differential equations on quadrilateral
grids. In order to obtain numerical solutions with high accuracy one usually has two
options: First, very fine grids can be used for the simulation. In case of an optimal
scaling classical first-order accurate solver one has to divide the characteristic length of
the mesh by two in order to double the accuracy of the obtained solution. Due to that
extremly fine grids are required in order to achieve a demanded accuracy which leads
to higher risk of numerical problems, high memory consumption and the need of very
small time steps. Thus, memory or simulation time constraints may often be exceeded
and violated using solution methods of first-order accuracy. Instead, the approach
presented in this seminar work uses a numerical scheme with second-order accuracy.
It can be easily extended to higher-order. This allows for higher solution accuracy on
much coarser grids, which has the potential to save a lot of computation time.

Finally, we want to apply the method not only to problems in conservative form but
also non-conservative systems such as shallow water equations and Quadrature-Based
Moment Equations. Therefore, the numerical scheme should be able to handle systems
of partial-differential equtions in non-conservative form.

On the basis of the first-order arrucate non-conservative PRICE-αC scheme, a sec-
ond order extension will be presented in chapter 2 using a reconstruction of the solution
from cell averages. This reconstruction may introduce spurious oscillations of the solu-
tion in non-smooth regions. Therefore, we present a solution limiting scheme (section
2.2.1) and integrate it into the method. The resulting second-order accurate scheme
was combined with an existing finite volume solver framework. In chapter 3.1 we val-
idate the solver and prove the claimed higher solution accuracy for smooth problems.
Then the scheme is applied to non-smooth application problems in non-conservative
form in chapter 3.2. Finally, we summarize the results in chapter 4 and discuss possi-
bilities of future work on the project.
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2 Numerics

This chapter concerns the PRICE-αC scheme, a numerical method for non-conservative
hyperbolic systems of partial differential equations developed by Toro and Siviglia in
[10]. This first-order scheme is then extended to second-order. However, the resulting
scheme can easily be adapted to other non-conservative schemes. Since the final aim is
to build a numerical method that is able to deal with complex geometries, the scheme
is based on an unstructured mesh. We mainly follow the notation of Canestrelli
et al., see [2, 3].

We consider a hyperbolic system of partial differential equations in two space di-
mensions

∂Q

∂t
+ Ax (Q)

∂Q

∂x
+ Ay (Q)

∂Q

∂y
= 0, (2.1)

Q = Q (x, t) , (x, t) ∈ Ω ⊂ R2 × [0, T ] , Q ∈ Ω ⊆ RN ,

where Ω is an open convex set, Q = (q1, q2, . . . , qN)T is the vector of unknowns and
Ax (Q) ∈ RN×N and Ay (Q) ∈ RN×N are the coefficient matrices, which are assumed
to be smooth and locally bounded. If the system matrices Ax (Q) and Ay (Q) can
be written as the Jacobi matrices of some flux functions Fx (Q), Fy (Q), such that

Ax = ∂Fx

∂x
and Ay = ∂Fy

∂y
, then the system of partial differential equations can be

expressed in the conservative form

∂Q

∂t
+
∂Fx

∂x
+
∂Fy

∂y
= 0. (2.2)

2.1 First-order PRICE Scheme

Toro and Siviglia developed a series of primitive centered (PRICE) numerical
schemes for solving hyperbolic systems in the form (2.1) (see [10]). They are based
on the FORCE scheme, a first-order centered scheme for conservation laws in the
form (2.2). As proposed by Canestrelli et al. in [3] the most promising of these
schemes, the so-called PRICE-αC scheme is used as the basis for the second-order
centered numerical method used in this seminar.

Consider a conforming tessellation of the computational domain TΩ ⊂ Ω by elements
Ti such that

TΩ =
⋃
i

Ti. (2.3)

The nf = 4 faces of each element Ti are given by ∂T ji where each face has length Sji
and an associated outward normal nji . The volume |Ti| of each element Ti is divided
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2 Numerics
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Figure 2.1: Notation of the general configuration on an unstructured two-dimensional
quadrilateral mesh

into local sub-volumes V −j generated by connecting the barycenter of Ti with the two

vertices of face j. The neighboring sub-volume adjacent to face ∂T ji is then locally
denoted by V +

j as shown in figure 2.1.
Now the two-dimensional first-order PRICE-αC scheme can be given as the following

one-step scheme:

Qn+1
i = Qn

i −
∆t

|Ti|

nf∑
j=1

SjiA
−
ij

(
Qn
j −Qn

i

)
, (2.4)

where

A−ij =
1

2
Âj+ 1

2
−

V +
j V

−
j

V +
j + V −j

1

∆tSji
I− 1

4

∆tSji
V +
j + V −j

Â2
j+ 1

2
. (2.5)

Here I denotes the identity matrix and V ±j the area of the sub-volumes associated with

cell Ti. Âj+ 1
2

is an approximation of the Roe matrix as defined in the following. For

the complete derivation of this numerical scheme we refer to [2].
Given a family of paths Ψ = Ψ (QL,QR, s,n) connecting QL and QR, a matrix

AΨ (QL,QR,n) is a Roe matrix if it satisfies the following properties:

• for any QL,QR ∈ Ω, n ∈ S1 : AΨ (QL,QR,n) has N real distinct eigenvalues;

• AΨ (Q,Q,n) = A (Q,n) for any Q ∈ Ω, n ∈ S1;

• for any QL,QR ∈ Ω, n ∈ S1:

AΨ (QL,QR,n) (QR −QL) =

1ˆ

0

A (Ψ (s,QL,QR) ,n)
∂Ψ

∂s
ds, (2.6)

where A (Q,n) = (Ax (Q) ,Ay (Q))T · n is the directional system matrix in direction
n. In the conservative case, if Ax (Q) ,Ay (Q) are the Jacobi matrices of some flux
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2 Numerics

functions Fx (Q) ,Fy (Q) then 2.6 reduces to

AΨ (QL,QR,n) (QR −QL) = Fn (QR)− Fn (QL) (2.7)

for any n ∈ S1 and Fn (Q) = (Fx (Q) ,Fy (Q))T · n.

A desirable choice for the matrix Âj+ 1
2

in equation (2.5) would be

Âj+ 1
2

= AΨ

(
Qn
i ,Q

n
j ,n
)
. (2.8)

In this case the PRICE scheme reduces to a modified conservative FORCEα scheme if
the system can be written in conservative form (2.2). Since the analytical computation
of the integral in (2.6) can be very expensive or impossible, we do not want to compute
the Roe matrix explicitly. An alternative approach is to use a simple segment path,
e.g. a linear path

Ψ (QL,QR, s) = QL + s (QR −QL) , (2.9)

which yields the simplification

AΨ (QL,QR,n) =

1ˆ

0

A (Ψ (QL,QR, s) ,n) ds. (2.10)

The key idea of the PRICE scheme as proposed in [2] is now to approximate the
integral in (2.10) using a Gaussian quadrature technique. The resulting very accurate
numerical approximation of the Roe matrix AΨ is then given by the centered Roe-type
matrix:

AM
Ψ (QL,QR,n) =

M∑
j=1

ωiA (Ψ (QL,QR, sj) ,n) (2.11)

using an M -point Gaussian quadrature rule with quadrature weights ωj and quadrature
nodes sj. Finally, we choose

Âj+ 1
2

= AM
Ψ

(
Qn
i ,Q

n
j ,n
)
, (2.12)

to avoid the explicit computation of the Roe averages.

2.2 Second-Order Extension

The first step for the extension of the first-order accurate numerical scheme is the
construction of an appropriate local polynomial representation of the solution on each
computational cell. Due to local extrema of this reconstruction, a limitation of the
slopes becomes necessary in order to avoid over- and undershoots of the numerical so-
lution. A number of solution reconstruction and slope limiting techniques are summa-
rized by Hubbard in [6]. Again, we will closely follow the notation by Canestrelli
given in [2].
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2 Numerics

In order to achieve second-order accuracy in space it is sufficient to consider a linear
reconstruction profile wi (x, t

n) for each cell [6], i.e. a plane of the form:

wi (x, t
n) = (x− xi) ai + (y − yi) bi + ci (2.13)

where (xi, yi) are the barycenter coordinates of the ith cell and ai,bi, ci ∈ RN are the
parameters of wi. This reconstruction profile over the cell i should satisfy the following
constraints:

1. The cell average value should be preserved:

1

|Ti|

ˆ

Ti

wi (x, t
n) dx = Qn

i ; (2.14)

2. The average of the reconstructed value of wi (x, t
n) in jth adjacent cell to the

ith cell should be as close as possible to the adjacent cell average Qn
j

J (wi (x, t
n)) :=

1

|Tj|

ˆ

Tj

wi (x, t
n) dx h Qn

j , ∀j ∈ Ni (2.15)

where Ni denotes the set of cells adjacent to cell i.

With these |Ni|+ 1 constraints, i.e. 5 conditions for quadrilateral cells, we are able to
determine the coefficients ai, bi and ci in (2.13). Note that, substituting (2.13) into
(2.14) directly leads to

ci = Qn
i .

Since the number of conditions is greater than the number of coefficients, not all these
conditions can be satisfied simultaneously in most cases. Therefore, the slopes ai,
bi of the linear profile are determined by minimizing the square distance between
reconstructed values and cell averages, and so minimizing the total residual function

R̃i (ai,bi) =
∑
j∈Ni

[
J (wi (xG, t

n))−Qn
j

]2
. (2.16)

This least squares procedure can be extended with a weighting of the distances:

Ri (ai,bi) =
∑
j∈Ni

[
βj
(
J (wi (xG, t

n))−Qn
j

)]2
, (2.17)

where βj are the used weights. These can be for example depending on the distance
of the barycenter of the adjacent cell j to the barycenter of the ith cell.

Due to local extrema of this reconstruction, over- and undershoots of the numerical
solution may appear resulting in oscillations and instabilities in non-smooth regions.
Thus, a slope limiting procedure is needed.
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2 Numerics

2.2.1 Limiter

We apply a TVD slope limiter to the reconstruction (2.13) according to [2, 9] by limiting
the slopes with limitation factors γ1, . . . , γN such that for Γ = diag (γ1, . . . , γN)

âi = Γai, b̂i = Γbi,

with the resulting limited reconstruction profile

ŵi (x, t
n) = Qn

i + (x− xi) âi + (y − yi) b̂i. (2.18)

Note that each limitation factor γi associated to the cell state qni which is a single
entry in Qn

i is uniformly applied to the slopes in both directions in order to leave the
direction of the slope vector unchanged. Following [6, 2] the limitation factors γi for
any entry qni of Qn

i are determined by

γi = min
j∈Ni

(γi,j) ,

where

γi,j =


Φ
(

qmin
i,j −qni

wi(xij ,tn)−qni

)
,if wi (xij, t

n) < qni

Φ
(

qmax
i,j −qni

wi(xij ,tn)−qni

)
,if wi (xij, t

n) > qni

1 ,if wi (xij, t
n) = qni ,

(2.19)

with qmin
i,j = min

(
qni , q

n
j

)
, qmax

i,j

(
qni , q

n
j

)
and wi (xij, t

n) the value of the reconstruction
polynomial at the midpoint of the interface xij = (xij, yij) of the ith and jth cell.
Φ denotes a classical limiter function. A wide variety of limiter functions have been
studied. Some standard limiters used here are:

• Sweby limiter
Φ (θ) = max [0,min (βθ, 1) ,min (θ, 1)] ,

for β ∈ [1, 2]. Famous examples are obtained for β = 1 (Minmod) and β = 2
(Superbee)

• Monotonized Central (MC) limiter

Φ (θ) = max

[
0,min

(
2θ,

1 + θ

2
, 2

)]
.

• van Leer limiter

Φ (θ) =
θ + |θ|
1 + |θ|

.

Further classical limiters can be found in [6]. Moreover, we want to mention the limiting
scheme proposed by Buffard and Clain (see [1]) which uses additional geometry
information for the calculation of γi. This limiting scheme is used by Stecca for the
higher-order extension of a modified PRICE scheme called UPRICE [9], but will not
be further discussed here.
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2 Numerics

2.2.2 Reconstruction in Time

After the reconstruction of the solution by a spatial polynomial wi (x, t
n) for each cell

Ti at time tn, we still need to compute the evolution of this polynomial in time. To be
able to increase the order of accuracy in Ti × [tn, tn+1] we use the ADER approach of
Toro and Titarev [11].

The local solution Qi (x, t) of the system (2.1) in each cell is expanded by a space-
time Taylor series with respect to the element barycenter xG and the time tn

Qi (x, t) = Qn
i + (x− xG)

∂Qi

∂x
+ (y − yG)

∂Qi

∂y
+ (t− tn)

∂Qi

∂t
+ . . . (2.20)

where the first order terms of the Taylor expansion are sufficient to achieve a second-
order accurate numerical scheme. All derivatives in (2.20) are evaluated at (xG, t

n).
Now using classical Cauchy-Kovalewski procedure with the PDE system (2.1) we get

∂Qi

∂t
= −

(
Ax (Qn

i )
∂Qi

∂x
+ Ay (Qn

i )
∂Qi

∂y

)
,

in order to substitute the time derivative. This yields

Qi (x, t) = Qn
i + (x− xG)

∂Qi

∂x
+ (y − yG)

∂Qi

∂y

− (t− tn)

(
Ax (Qn

i )
∂Qi

∂x
+ Ay (Qn

i )
∂Qi

∂y

)
= Qn

i + ((x− xG) I− (t− tn) Ax (Qn
i )) âi

+ ((y − yG) I− (t− tn) Ay (Qn
i )) b̂i, (2.21)

where we obtained the spatial derivatives from the limited reconstruction polynomial
(2.18).

2.2.3 Second-Order PRICE Scheme

Using the reconstruction techniques in space and time one can obtain the final second-
order accurate one-step PRICE scheme by integration of (2.1) over a space-time control
volume Ti × [tn, tn+1]:

Qn+1
i = Qn

i −
1

|Ti|
A · ∇Q− ∆t

|Ti|

nf∑
j=1

D−
j+ 1

2

, (2.22)

where

A · ∇Q =

tn+1ˆ

tn

ˆ

Ti

Ax (Qi (x, t))
∂Qi

∂x
+ Ay (Qi (x, t))

∂Qi

∂y
dxdt, (2.23)
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2 Numerics

and

D−
j+ 1

2

=
1

∆t

tn+1ˆ

tn

ˆ

Sij

A−ij (Qi (x, t)) (QjS −QiS) dsdt, (2.24)

with
QjS = Qj

(
xSij

, t
)

, QiS = Qi

(
xSij

, t
)
. (2.25)

Here A−ij (Q (x, t)) again denotes the PRICE flux matrix from (2.5). The edge adjacent
to both the ith and the jth cell is given by Sij = ∂Ti ∩ ∂Tj. xSij

is the vector that
defines this edge. The integrals in (2.23) and (2.24) are approximated by Gaussian
quadrature. For second-order accuracy at least one integration point in time and three
integration points per space-dimension are necessary. Note that for a first-order scheme
the A · ∇Q term vanishes, since ∇Q (x, t) = 0.

Moreover, (2.22) gives a second-order accurate one-step update formula for other
non-conservative finite volume schemes by substitution of the flux matrix A−ij (Q (x, t))
with the corresponding flux matrix of the new scheme. Examples for such schemes are
the non-conservative Lax-Friedrichs or the UPRICE scheme [9].
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3 Results

3.1 Convergence Study

In this chapter we compute the order of accuracy of the presented second-order PRICE
scheme numerically to verify that the expected theoretical order is achieved. The
numerical method has been integrated into an existing finite-volume solver developed
by Koellermeier, that was also used for [7]. All results and timings presented in this
chapter have been generated with this package. The flux matrix (2.12) of the PRICE
scheme has been computed using three Gaussian integration points on the interval
[0, 1]

s1 =
1

2
, s2,3 =

1

2
±
√

15

10
, ω1 =

8

18
, ω2,3 =

5

18
, (3.1)

as proposed by Canestrelli [2].

3.1.1 Linear Transport Equation

First, we consider the scalar linear transport equation given by

∂u

∂t
+ ax

∂u

∂x
+ ay

∂u

∂y
= 0 (3.2)

where ax and ay denote the transport speeds in x- and y–direction respectively. For
this simple linear and conservative PDE a solution can be given by

u (x, t) = u0 (x− at) (3.3)

with u0 (x) the initial condition and a = (ax, ay)
T .

We solve the equation for a = (1, 1)T in a domain Ω = [0, 1]2 using smooth initial
conditions and periodical boundary conditions prescribed at the four boundaries. We
used a sequence of regular equidistant quadrilateral meshes in two dimensions where
the number of cells N per space dimension is doubled for each refinement of the mesh.
The time step size ∆t was chosen such that the CFL number is 0.5 for all meshes.

Figure 3.1 shows the relative L1-error of the PRICE scheme after T = 1. As expected,
we can observe first- and second-order accuracy for the first-order and unlimited second-
order versions of the PRICE scheme respectively. For N ≥ 40 all limited schemes
(Minmod, Superbee, MC and vanLeer limiter) approximately show a second-order
behavior, where the Minmod limiter has the smallest relative L1-error of the limited
schemes.
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3 Results
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Figure 3.1: Relative L1-error for linear transport equations test case

3.1.2 Inviscid Shallow Water Equations

We validated the numerical scheme and its second-order accuracy for a linear smooth
test case in 2.2.3. The next step is the validation of a non-linear, non-conservative
smooth test problem. We consider the 2D inviscid shallow water equations coupled
with a bottom evolution equation which can be written in non-conservative form (2.1)
with

Ax =


0 1 0 0

− q2x
h2

+ gh 2qx
h

0 gh
− qxqy

h2
qy
h

qx
h

0
0 −1 0 0

 , Ay =


0 0 1 0
− qxqy

h2
qy
h

qx
h

0

− q2y
h2

+ gh 0 2qy
h

0
0 0 −1 0

 , (3.4)

Q = (h, qx, qy, b)
T .

In order to validate the order of accuracy an exact smooth solution is constructed (see
[3]) which reads

h (x, y, t) = h0 + x0 sin (kx− ωt) , (3.5)

qx (x, y, t) =
ω

k
h0 + c0

ω

k
sin (kx− ωt) , (3.6)

qy (x, y, t) = 0, (3.7)

b (x, y, t) = −h (x, y, t) , (3.8)

and is essentially a 1D test case. Here k = 2π
L

and ω = 2π
T0

, L and T0 are the wave
length and the period of the sinusoidal oscillation, respectively. The system is solved
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Figure 3.2: L1-error for inviscid shallow water equations test case

in a domain Ω = [0, 800] × [0, 200] using parameters h0 = 1, c0 = 0.2, T0 = 100 and
L = 800 and the relative error of the numerical solution is computed at time T = 100s.

Figure 3.2 depicts the relative L1-error of the simulation for varying numbers of cells
Nx in x-direction for constant CFL number of 0.6. The number of cells in y-direction
can be held constant since problem (3.5)-(3.8) is a 1D test case. As for the linear
transport test case one can observe near-perfect second-order accuracy for the second-
order method 2.2.3 with all tested limiters. Our numerical convergence study also
directly allows us to assess the computational efficiency of the second-order scheme
in comparison to the first-order PRICE scheme. Table 3.1 lists the total computation
time, the average computation time per time step and the relative L1-error for the first-
order and the second-order PRICE method with minmod limiter. All computations
were run on a single thread on an Intel i7-2600k (3.4Ghz clock speed) processor. We
can observe that the first-order scheme is about 5 to 7 times faster than the second-
order scheme. Nevertheless, we can clearly conclude that the second-order scheme is
more efficient to use on coarse meshes than low order methods on fine grids (for smooth
solutions). For example the computation on the Nx = 320 mesh using the first-order
scheme took a total of 4.61s to reach an error of 0.32 · 10−2, whereas the second-order
scheme on a very coarse grid with Nx = 20 reaches an error in the same order of
magnitude (0.40 · 10−2) in only about 0.12s.
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3 Results

Nx 1st-order 2nd-order
tCPU [s] tCPU

step
[ms] L1-error tCPU [s] tCPU

step
[ms] L1-error

20 0.019 0.56 0.43E − 01 0.12 3.75 0.40E − 02
40 0.062 0.93 0.24E − 01 0.43 6.44 0.78E − 03
80 0.268 2.01 0.12E − 01 1.62 12.15 0.58E − 04
160 0.939 3.52 0.65E − 02 6.48 24.28 0.16E − 04
320 4.608 8.64 0.32E − 02 25.48 47.78 0.47E − 05
640 17.225 16.14 0.16E − 02 107.82 101.08 0.11E − 05

Table 3.1: Average computation time and relative error for the inviscid shallow water
test case.

3.2 Application: Non-Smooth Problems

In this section we apply the scheme (2.22) to two non-smooth non-conservative appli-
cation problems, namely the circular dam-break problem and the shock tube problem.
Again, the centered Roe-type matrix (2.11) is evaluated using three Gaussian quadra-
ture points (3.1) for all computations.

3.2.1 Circular Dam-Break Problem

In this test case we consider a cylindrical tank of diameter 20m initially filled with 2m
water surrounded by water of depth 0.5m (see figure 3.3a). At time t0 = 0s the tank
instantaneously breaks generating a shock wave resulting in an increase of water depth
in the lower depth region propagated in radial direction [4]. The test can be useful
to check the ability of the method to preserve cylindrical symmetry. The physics are
modeled using shallow water equations with a fixed bed defined in the form (2.1) for
Q = (H, qx, qy, b)

T by

Ax =


0 1 0 0

g (H − b)− q2x
(H−b)2

2qx
H−b 0 q2x

(H−b)2

− qxqy

(H−b)2
qy
H−b

qy
H−b

qxqy

(H−b)2

0 0 0 0

 , (3.9)

Ay =


0 0 1 0

− qxqy
(H−b)2

qy
H−b

qx
H−b

qxqy

(H−b)2

g (H − b)− q2y

(H−b)2 0 2qy
H−b

q2y

(H−b)2

0 0 0 0

 . (3.10)

Figures 3.3b and 3.3c show the results of the simulation after T = 1s on a structured
quadrilateral mesh with 40, 000 elements. We observe that the method is able to
preserve the radial symmetry of the problem. Similar results can be achieved using
unstructured grids, compare figure 3.5.

12



3 Results

(a) Initial Configuration at t0 = 0s

(b) Solution at T = 1s using the first-order method

(c) Solution at T = 1s using the second-order
method with minmod limiter

Figure 3.3: Initial condition and results of the dam-break problem after T = 1s
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Figure 3.4: 1D slice of the solution of the dam-break problem at T = 1s
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3 Results

N 1st-order 2nd-order
tCPU [s] tCPU

step
[s] tCPU [s] tCPU

step
[s]

625 0.04 0.009 0.23 0.046
2, 500 0.28 0.028 1.50 0.150
10, 000 2.18 0.109 13.07 0.654
40, 000 16.59 0.415 105.43 2.636
160, 000 123.20 1.540 842.97 10.537

Table 3.2: Average computation time per time step for the dam-break test case.

(a) Minmod (b) Superbee

Figure 3.5: Dam-break problem on unstructured grid with 50, 970 cells after T = 1s

15



3 Results

Now consider a 1D slice in any direction through the center of the domain. These
slices should be identical due to the radial symmetry. A slice in x-direction is shown
in figure 3.4. The shown reference solution was obtained using the first-order PRICE
method on a much finer grid. We observe that the first-order scheme is the most
diffusive, while the second-order scheme without any limiter shows the least numerical
diffusion. As shortly discussed in section 2.2, we get over- and undershoots of the
solution at discontinuities if the slopes are not limited. Now applying limitation with
the minmod or superbee limiters yields stable solutions with much higher accuracy
without any over- or undershoots.

Similar to the inviscid shallow water test case, we see very good first-order scaling
of the simulation runtime with the number of cells as the CFL number is constant, see
table 3.2. In addition, one can observe good agreement of the numerical solution and
a pseudo-analytical solution of the problem in 1D which is presented in [2] but will not
be further discussed here.

3.2.2 Quadrature-Based Moment Equations

Finally, we consider the so-called Quadrature-Based Moment Equations (QBME) which
result from a transformation and model reduction of the Boltzmann transport equa-
tion [8]. The QBME model in 1D for 5 moments is a non-conservative system of
partially-conservative PDEs with a source term and can be given as follows:

∂Q

∂t
+ Ax

∂Q

∂x
= −1

τ
BQ, Q = (ρ, u, θ, f3, f4)T ,

Ax =


u ρ 0 0 0
θ
ρ

u 1 0 0

0 2θ u 6
ρ

0

0 4f4
ρθ
2
− 10f4

θ
u 4

−f3θ
ρ

5f4 −f3 θ + 15f4
ρ
θ u

 .

For a detailed derivation see [5]. Here ρ is the density, u is the velocity, θ is the
temperature and f3 and f4 are related to higher moments of the system. The relaxation
time τ is defined by the Knudsen number Kn of the fluid and given by τ = Kn

ρ
.

We consider a one-dimensional shock tube problem on a domain [−2, 2] with initial
data

Q (x, t = 0) =

{
(7, 0, 1, 0, 0)T if x < 0,

(1, 0, 1, 0, 0)T if x > 0,

and Knudsen number Kn = 0.5. Figure 3.6 shows a comparison of the results for a
simulation up to T = 0.3s generated with the first-order PRICE scheme (2.4) and
the second-order PRICE scheme (2.22) with the minmod limiter. Again, we observe
that the second-order scheme is less diffusive and the limiter prevents most over- and
undershoots of the solution. Note that we can observe some oscillations in the velocity
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3 Results
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Figure 3.6: Shock tube results after T = 0.3

u right before the strong shock for the results of the second-order scheme. These were
not sufficiently damped by the limiter but they do not get amplified for t > 0.3s.
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4 Conclusion

4.1 Summary

After the motivation we have presented the PRICE-αC method which is a first-order
monotone centered scheme for non-conservative PDE systems [3]. This scheme was
extended to second-order using a polynomial reconstruction and the ADER approach
[6, 2]. Slope limitation of the reconstruction became necessary at non-smooth solu-
tion regions in order to suppress spurious oscillations [1]. The presented second-order
extension can easily be generalized to higher order.

Analyzing the convergence of the second-order scheme we validated its second-order
behavior using linear transport and inviscid shallow water equations. We have ob-
served that we can achieve much higher accuracy than with the first-order method.
Comparing both schemes we saw that the second-order scheme was also superior in
terms of runtime: We achieved a comparable relative error in much less computation
time using the extended version of the PRICE scheme which coincides with the results
of Canestrelli et al. [3].

Application of the PRICE scheme with second-order extension to a circular dam-
break problem using shallow water equations with fixed bed yielded that the scheme
preserved the cylindrical symmetry of the initial conditions. We saw the expected over-
and undershoots of the numerical solution if no slope limitation was applied. These
could be avoided using limiters as introduced in chapter 2.2.1. Finally, we applied the
method to a non-conservative PDE system with source term. The Quadrature-Based
Moment Equations [5, 8] were used for the physical modeling of a shock tube problem.
Again, the second-order scheme showed better resolution of shocks and rarefaction
waves and less numerical diffusion.

4.2 Further Work

The work on this topic will be continued by applications of the extended scheme to test
and real-world problems. Mainly the QBME and similar systems such as the HME
or Grad’s (see [5]) system will be considered and analyzed in depth. Additionally,
other limiters should be integrated into the solver. This could be for example the
limiter presented by Stecca [9]. Moreover, further tests of the schemes for fully
unstructured grids will be conducted. As the matter stands, the scheme has only been
tested on unstructured grids in case of the dam-break problem. Finally, some runtime
optimizations should be performed for our implementation of the scheme.
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